java.util.concurrent 之ConcurrentHashMap 源碼分析

      最近有點想研究下java.util.concurrent 包下的一些類中的實現,在現實中也對這包裏的類應用不少,但都沒怎麼去深入理解,只是聽說裏面的實現在高併發中有不錯的性能。。接下將對裏面的幾個比較常用的類的源碼進行分析。。

 

   ConcurrentHashMap類

   研究源碼時,我一般喜歡從實際的應用中去一步步調試分析。。這樣理解起來容易很多。

 

   實際應用:

 

   ConcurrentMap<String, String> map = new ConcurrentHashMap<String, String>();
		String oldValue = map.put("zhxing", "value");
		String oldValue1 = map.put("zhxing", "value1");
		String oldValue2 = map.putIfAbsent("zhxing", "value2");
		String value = map.get("zhxing");

		System.out.println("oldValue:" + oldValue);
		System.out.println("oldValue1:" + oldValue1);
		System.out.println("oldValue2:" + oldValue2);
		System.out.println("value:" + value);
 

輸出結果:

oldValue:null
oldValue1:value
oldValue2:value1
value:value1
 

先從new 方法開始

	/**
	 * Creates a new, empty map with a default initial capacity (16), load
	 * factor (0.75) and concurrencyLevel(也就是鎖的個數) (16).
	 * 
	 */
public ConcurrentHashMap() {
        this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
    }
// 當都是默認的設置參數
	public ConcurrentHashMap(int initialCapacity, float loadFactor,
			int concurrencyLevel) {
		if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
			throw new IllegalArgumentException();
		// MAX_SEGMENTS = 1 << 16,鎖的個數有限制
		if (concurrencyLevel > MAX_SEGMENTS)
			concurrencyLevel = MAX_SEGMENTS;

		// Find power-of-two sizes best matching arguments
		// 這裏是根據設定的併發數查找最優的併發數
		int sshift = 0;
		int ssize = 1;
		while (ssize < concurrencyLevel) {
			++sshift;
			ssize <<= 1;// 不斷右移
		}
		// 到這裏,sshift=4,ssize=16.因爲concurrencyLevel=16=1<<4
		segmentShift = 32 - sshift;// =16
		segmentMask = ssize - 1;// =3
		// 創建了16個分段(Segment),其實每個分段相當於一個帶鎖的map
		this.segments = Segment.newArray(ssize);

		if (initialCapacity > MAXIMUM_CAPACITY)
			initialCapacity = MAXIMUM_CAPACITY;
		// 這裏是計算每個分段存儲的容量
		int c = initialCapacity / ssize;// c=16/16=1
		if (c * ssize < initialCapacity)// 防止分段的相加的容量小於總容量
			++c;
		int cap = 1;
		// 如果初始容量比cap的容量小,則已雙倍的容量增加
		while (cap < c)
			cap <<= 1;
		// 分別new分段
		for (int i = 0; i < this.segments.length; ++i)
			this.segments[i] = new Segment<K, V>(cap, loadFactor);
	}
 

這裏提到了一個Segment 這個類,其實這個是總map 的分段,就是爲了實現分段鎖機制。

/**
	 * Segments are specialized versions of hash tables. This subclasses from
	 * ReentrantLock opportunistically, just to simplify some locking and avoid
	 * separate construction. map 的分段實現,擴展了鎖機制
	 */
	static final class Segment<K, V> extends ReentrantLock implements
			Serializable {
//。。。
Segment(int initialCapacity, float lf) {
			loadFactor = lf;
			// 這個是開始初始化map容器了
			setTable(HashEntry.<K, V> newArray(initialCapacity));
		}
		/**
		 * Sets table to new HashEntry array. Call only while holding lock or in
		 * constructor.
		 */
		void setTable(HashEntry<K, V>[] newTable) {
			threshold = (int) (newTable.length * loadFactor);
			table = newTable;
		}
}

	// 這個是實際保存到map的東西了,如果對HashMap源碼有了解的話,是不是覺得很像Hash.Entry,但又沒實現Map.Entry接口,它是用另外個類WriteThroughEntry
	// 來實現這個Map.Entry接口的。
	static final class HashEntry<K, V> {
		final K key;
		final int hash;
		volatile V value;
		final HashEntry<K, V> next;

		HashEntry(K key, int hash, HashEntry<K, V> next, V value) {
			this.key = key;
			this.hash = hash;
			this.next = next;
			this.value = value;
		}

		@SuppressWarnings("unchecked")
		// 新建數組,保存着map裏的鍵值對
		static final <K, V> HashEntry<K, V>[] newArray(int i) {
			return new HashEntry[i];
		}
 

get方法實現

//ConcurrentHashMap類	
// 在這裏發現,get操作幾乎是不帶鎖的。。效率提高很多
	public V get(Object key) {
		// key不能爲null 。。
		int hash = hash(key); // throws NullPointerException if key null
		return segmentFor(hash).get(key, hash);
	}

	// 這個hash方式不太懂,估計是爲了能均勻分佈吧
	static int hash(Object x) {
		int h = x.hashCode();
		h += ~(h << 9);
		h ^= (h >>> 14);
		h += (h << 4);
		h ^= (h >>> 10);
		return h;
	}

	/**
	 * Returns the segment that should be used for key with given hash 這個是尋找所在分段
	 * 
	 * @param hash
	 *            the hash code for the key
	 * @return the segment
	 */
	final Segment<K, V> segmentFor(int hash) {
		// hash>>>16&3
		return segments[(hash >>> segmentShift) & segmentMask];
	}

//Segment 類方法
		/* Specialized implementations of map methods */
		// 獲得值了,和其他map的get的實現其實差不多
		V get(Object key, int hash) {
			// count 是每個分段的鍵值對個數,而且是volatile,保證在內存中只有一份
			if (count != 0) { // read-volatile
				// 獲得分段中hash鏈表的第一個值
				HashEntry<K, V> e = getFirst(hash);
				while (e != null) {
					if (e.hash == hash && key.equals(e.key)) {
						V v = e.value;
						if (v != null)
							return v;
						// 這個做了一個挺有趣的檢查,如果v==null,而key!=null,的時候會等待鎖中value的值
						return readValueUnderLock(e); // recheck
					}
					e = e.next;
				}
			}
			return null;
		}

		/**
		 * Reads value field of an entry under lock. Called if value field ever
		 * appears to be null. This is possible only if a compiler happens to
		 * reorder a HashEntry initialization with its table assignment, which
		 * is legal under memory model but is not known to ever occur.
		 */
		V readValueUnderLock(HashEntry<K, V> e) {
			lock();
			try {
				return e.value;
			} finally {
				unlock();
			}
		}

 

put 方法

//ConcurrentHashMap類
	// 注意的是key 和value 都不能爲空
	public V put(K key, V value) {
		if (value == null)
			throw new NullPointerException();
		// 和get方式一樣的hash 方式
		int hash = hash(key);
		return segmentFor(hash).put(key, hash, value, false);
	}

//Segment 類

	V put(K key, int hash, V value, boolean onlyIfAbsent) {
			// 這裏加鎖了
			lock();
			try {
				int c = count;
				// 如果超過限制,就重新分配
				if (c++ > threshold) // ensure capacity
					rehash();
				HashEntry<K, V>[] tab = table;
				int index = hash & (tab.length - 1);
				HashEntry<K, V> first = tab[index];
				HashEntry<K, V> e = first;
				// e的值總是在鏈表的最後一個
				while (e != null && (e.hash != hash || !key.equals(e.key)))
					e = e.next;

				V oldValue;
				if (e != null) {
					oldValue = e.value;
					// 這裏就是實現putIfAbsent 的方式
					if (!onlyIfAbsent)
						e.value = value;
				} else {
					oldValue = null;
					++modCount;
					tab[index] = new HashEntry<K, V>(key, hash, first, value);
					count = c; // write-volatile
				}
				return oldValue;
			} finally {
				unlock();
			}
		}

		// 這中擴容方式應該和其他map 的擴容一樣
		void rehash() {
			HashEntry<K, V>[] oldTable = table;
			int oldCapacity = oldTable.length;
			// 如果到了最大容量則不能再擴容了,max=1<<30,這將可能導致的一個後果是map的操作越來越慢
			if (oldCapacity >= MAXIMUM_CAPACITY)
				return;

			/*
			 * Reclassify nodes in each list to new Map. Because we are using
			 * power-of-two expansion, the elements from each bin must either
			 * stay at same index, or move with a power of two offset. We
			 * eliminate unnecessary node creation by catching cases where old
			 * nodes can be reused because their next fields won't change.
			 * Statistically, at the default threshold, only about one-sixth of
			 * them need cloning when a table doubles. The nodes they replace
			 * will be garbage collectable as soon as they are no longer
			 * referenced by any reader thread that may be in the midst of
			 * traversing table right now.
			 */
			// 以兩倍的方式增長
			HashEntry<K, V>[] newTable = HashEntry.newArray(oldCapacity << 1);
			threshold = (int) (newTable.length * loadFactor);
			int sizeMask = newTable.length - 1;
			// 下面的數據拷貝就沒多少好講的了
			for (int i = 0; i < oldCapacity; i++) {
				// We need to guarantee that any existing reads of old Map can
				// proceed. So we cannot yet null out each bin.
				HashEntry<K, V> e = oldTable[i];

				if (e != null) {
					HashEntry<K, V> next = e.next;
					int idx = e.hash & sizeMask;

					// Single node on list
					if (next == null)
						newTable[idx] = e;

					else {
						// Reuse trailing consecutive sequence at same slot
						HashEntry<K, V> lastRun = e;
						int lastIdx = idx;
						for (HashEntry<K, V> last = next; last != null; last = last.next) {
							int k = last.hash & sizeMask;
							if (k != lastIdx) {
								lastIdx = k;
								lastRun = last;
							}
						}
						newTable[lastIdx] = lastRun;

						// Clone all remaining nodes
						for (HashEntry<K, V> p = e; p != lastRun; p = p.next) {
							int k = p.hash & sizeMask;
							HashEntry<K, V> n = newTable[k];
							newTable[k] = new HashEntry<K, V>(p.key, p.hash, n,
									p.value);
						}
					}
				}
			}
			table = newTable;
		}

 

size 方法

	/**
	 * Returns the number of key-value mappings in this map. If the map contains
	 * more than <tt>Integer.MAX_VALUE</tt> elements, returns
	 * <tt>Integer.MAX_VALUE</tt>. javadoc 上也寫明瞭,返回的數值不能超過Int的最大值,超過也返回最大值
	 * 在下面的分析也可以看出,爲了減少鎖競爭做了一些性能優化,這種的優化方式在很多方法都有使用
	 * 
	 * @return the number of key-value mappings in this map
	 */
	public int size() {
		final Segment<K, V>[] segments = this.segments;
		long sum = 0;
		long check = 0;
		int[] mc = new int[segments.length];
		// Try a few times to get accurate count. On failure due to
		// continuous async changes in table, resort to locking.
		// 這裏最多試RETRIES_BEFORE_LOCK=2 次的檢查對比
		for (int k = 0; k < RETRIES_BEFORE_LOCK; ++k) {
			check = 0;
			sum = 0;// size 總數
			int mcsum = 0;// 修改的總次數
			// 這裏保存了一份對比值,供下次對比時使用
			for (int i = 0; i < segments.length; ++i) {
				sum += segments[i].count;
				mcsum += mc[i] = segments[i].modCount;
			}
			// 只有當map初始化的時候纔等於0
			if (mcsum != 0) {
				// 在此對比上面保存的修改值
				for (int i = 0; i < segments.length; ++i) {
					check += segments[i].count;
					if (mc[i] != segments[i].modCount) {
						check = -1; // force retry
						break;
					}
				}
			}
			// 檢查和第一次保存值一樣則結束循環
			if (check == sum)
				break;
		}
		// 當不相等的時候,這裏就只有用鎖來保證正確性了
		if (check != sum) { // Resort to locking all segments
			sum = 0;
			for (int i = 0; i < segments.length; ++i)
				segments[i].lock();
			for (int i = 0; i < segments.length; ++i)
				sum += segments[i].count;
			for (int i = 0; i < segments.length; ++i)
				segments[i].unlock();
		}
		// 這裏也可以看出,如果超過int 的最大值值返回int 最大值
		if (sum > Integer.MAX_VALUE)
			return Integer.MAX_VALUE;
		else
			return (int) sum;
	}

 

keys 方法

	public Enumeration<K> keys() {
		//這裏新建了一個內部Iteraotr 類
		return new KeyIterator();
	}
//這裏主要是繼承了HashIterator 方法,基本的實現都在HashIterator 中
	final class KeyIterator extends HashIterator implements Iterator<K>,
			Enumeration<K> {
		public K next() {
			return super.nextEntry().key;
		}

		public K nextElement() {
			return super.nextEntry().key;
		}
	}

	/* ---------------- Iterator Support -------------- */
	// 分析代碼發現,這個遍歷過程沒有涉及到鎖,查看Javadoc 後可知該視圖的 iterator 是一個“弱一致”的迭代器。。
	abstract class HashIterator {
		int nextSegmentIndex;// 下一個分段的index
		int nextTableIndex;// 下一個分段的容器的index
		HashEntry<K, V>[] currentTable;// 當前容器
		HashEntry<K, V> nextEntry;// 下個鍵值對
		HashEntry<K, V> lastReturned;// 上次返回的鍵值對

		HashIterator() {
			nextSegmentIndex = segments.length - 1;
			nextTableIndex = -1;
			advance();
		}

		public boolean hasMoreElements() {
			return hasNext();
		}

		// 先變量鍵值對的鏈表,再對table 數組的index 遍歷,最後遍歷分段數組的index。。這樣就可以完整的變量完所有的entry了
		final void advance() {
			// 先變量鍵值對的鏈表
			if (nextEntry != null && (nextEntry = nextEntry.next) != null)
				return;
			// 對table 數組的index 遍歷
			while (nextTableIndex >= 0) {
				if ((nextEntry = currentTable[nextTableIndex--]) != null)
					return;
			}
			// 遍歷分段數組的index
			while (nextSegmentIndex >= 0) {
				Segment<K, V> seg = segments[nextSegmentIndex--];
				if (seg.count != 0) {
					currentTable = seg.table;
					for (int j = currentTable.length - 1; j >= 0; --j) {
						if ((nextEntry = currentTable[j]) != null) {
							nextTableIndex = j - 1;
							return;
						}
					}
				}
			}
		}

		public boolean hasNext() {
			return nextEntry != null;
		}

		HashEntry<K, V> nextEntry() {
			if (nextEntry == null)
				throw new NoSuchElementException();
			// 把上次的entry換成當前的entry
			lastReturned = nextEntry;
			// 這裏做一些預操作
			advance();
			return lastReturned;
		}

		public void remove() {
			if (lastReturned == null)
				throw new IllegalStateException();
			ConcurrentHashMap.this.remove(lastReturned.key);
			lastReturned = null;
		}
	}

 

keySet/Values/elements 這幾個方法都和keys 方法非常相似 。。就不解釋了。。而entrySet 方法有點特別。。我也有點不是很明白。。

//這裏沒什麼好說的,看下就明白,主要在下面
public Set<Map.Entry<K, V>> entrySet() {
		Set<Map.Entry<K, V>> es = entrySet;
		return (es != null) ? es : (entrySet = new EntrySet());
	}

	final class EntrySet extends AbstractSet<Map.Entry<K, V>> {
		public Iterator<Map.Entry<K, V>> iterator() {
			return new EntryIterator();
		}
}
//主要在這裏,新建了一個WriteThroughEntry 這個類
	final class EntryIterator extends HashIterator implements
			Iterator<Entry<K, V>> {
		public Map.Entry<K, V> next() {
			HashEntry<K, V> e = super.nextEntry();
			return new WriteThroughEntry(e.key, e.value);
		}
	}

	/**
	 * Custom Entry class used by EntryIterator.next(), that relays setValue
	 * changes to the underlying map.
	 * 這個主要是返回一個Entry,但有點不明白的是爲什麼不在HashEntry中實現Map
	 * .Entry就可以了(HashMap就是這樣的),爲了減少鎖競爭??
	 */
	final class WriteThroughEntry extends AbstractMap.SimpleEntry<K, V> {
		WriteThroughEntry(K k, V v) {
			super(k, v);
		}

		/**
		 * Set our entry's value and write through to the map. The value to
		 * return is somewhat arbitrary here. Since a WriteThroughEntry does not
		 * necessarily track asynchronous changes, the most recent "previous"
		 * value could be different from what we return (or could even have been
		 * removed in which case the put will re-establish). We do not and
		 * cannot guarantee more.
		 */
		public V setValue(V value) {
			if (value == null)
				throw new NullPointerException();
			V v = super.setValue(value);
			ConcurrentHashMap.this.put(getKey(), value);
			return v;
		}
	}
 

   從上面可以看出,ConcurrentHash 也沒什麼特別的,大概的思路就是採用分段鎖機制來實現的,把之前用一個容易EntryTable來裝的轉換成多個Table來裝鍵值對。而方法裏面的也採用了不少爲了減少鎖競爭而做的一些優化。。從ConcurrentHash類裏面可以看出,它裏面實現了一大堆的內部類。。比如Segment/KeyIterator/ValueIterator/EntryIterator等等。。個人覺得有些代碼好像比較難理解。。比如Segment 類繼承ReentrantLock,爲什麼不用組合呢。。還會有上面提到的,HashEntry 爲什麼不像HashMap 的Entry一樣實現Map.Entry接口。。建立這麼多內部類,搞得人頭暈暈的。。。。

 

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章