python面向對象高級的編程

1、

通常情況下,上面的set_score方法可以直接定義在class中,但動態綁定允許我們在程序運行的過程中動態給class加上功能,這在靜態語言中很難實現。

使用__slots__

但是,如果我們想要限制實例的屬性怎麼辦?比如,只允許對Student實例添加nameage屬性。

爲了達到限制的目的,Python允許在定義class的時候,定義一個特殊的__slots__變量,來限制該class實例能添加的屬性:

class Student(object):
    __slots__ = ('name', 'age') # 用tuple定義允許綁定的屬性名稱
>>> s = Student() # 創建新的實例
>>> s.name = 'Michael' # 綁定屬性'name'
>>> s.age = 25 # 綁定屬性'age'
>>> s.score = 99 # 綁定屬性'score'
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: 'Student' object has no attribute 'score'

由於'score'沒有被放到__slots__中,所以不能綁定score屬性,試圖綁定score將得到AttributeError的錯誤。

使用__slots__要注意,__slots__定義的屬性僅對當前類實例起作用,對繼承的子類是不起作用的:

>>> class GraduateStudent(Student):
...     pass
...
>>> g = GraduateStudent()
>>> g.score = 9999

除非在子類中也定義__slots__,這樣,子類實例允許定義的屬性就是自身的__slots__加上父類的__slots__

 

class Student(object):

    def get_score(self):
         return self._score

    def set_score(self, value):
        if not isinstance(value, int):
            raise ValueError('score must be an integer!')
        if value < 0 or value > 100:
            raise ValueError('score must between 0 ~ 100!')
        self._score = value

還記得裝飾器(decorator)可以給函數動態加上功能嗎?對於類的方法,裝飾器一樣起作用。Python內置的@property裝飾器就是負責把一個方法變成屬性調用的:

class Student(object):

    @property
    def score(self):
        return self._score

    @score.setter
    def score(self, value):
        if not isinstance(value, int):
            raise ValueError('score must be an integer!')
        if value < 0 or value > 100:
            raise ValueError('score must between 0 ~ 100!')
        self._score = value

@property的實現比較複雜,我們先考察如何使用。把一個getter方法變成屬性,只需要加上@property就可以了,此時,@property本身又創建了另一個裝飾器@score.setter,負責把一個setter方法變成屬性賦值,於是,我們就擁有一個可控的屬性操作:

 

>>> s = Student()
>>> s.score = 60 # OK,實際轉化爲s.set_score(60)
>>> s.score # OK,實際轉化爲s.get_score()
60
>>> s.score = 9999
Traceback (most recent call last):
  ...
ValueError: score must between 0 ~ 100!

 

注意到這個神奇的@property,我們在對實例屬性操作的時候,就知道該屬性很可能不是直接暴露的,而是通過getter和setter方法來實現的。

還可以定義只讀屬性,只定義getter方法,不定義setter方法就是一個只讀屬性:

 

class Student(object):

    @property
    def birth(self):
        return self._birth

    @birth.setter
    def birth(self, value):
        self._birth = value

    @property
    def age(self):
        return 2015 - self._birth

上面的birth是可讀寫屬性,而age就是一個只讀屬性,因爲age可以根據birth和當前時間計算出來。

 

在設計類的繼承關係時,通常,主線都是單一繼承下來的,例如,Ostrich繼承自Bird。但是,如果需要“混入”額外的功能,通過多重繼承就可以實現,比如,讓Ostrich除了繼承自Bird外,再同時繼承Runnable。這種設計通常稱之爲MixIn。

爲了更好地看出繼承關係,我們把RunnableFlyable改爲RunnableMixInFlyableMixIn。類似的,你還可以定義出肉食動物CarnivorousMixIn和植食動物HerbivoresMixIn,讓某個動物同時擁有好幾個MixIn:

class Dog(Mammal, RunnableMixIn, CarnivorousMixIn):
    pass

MixIn的目的就是給一個類增加多個功能,這樣,在設計類的時候,我們優先考慮通過多重繼承來組合多個MixIn的功能,而不是設計多層次的複雜的繼承關係。

Python自帶的很多庫也使用了MixIn。舉個例子,Python自帶了TCPServerUDPServer這兩類網絡服務,而要同時服務多個用戶就必須使用多進程或多線程模型,這兩種模型由ForkingMixInThreadingMixIn提供。通過組合,我們就可以創造出合適的服務來。

比如,編寫一個多進程模式的TCP服務,定義如下:

class MyTCPServer(TCPServer, ForkingMixIn):
    pass

編寫一個多線程模式的UDP服務,定義如下:

class MyUDPServer(UDPServer, ThreadingMixIn):
    pass

如果你打算搞一個更先進的協程模型,可以編寫一個CoroutineMixIn

class MyTCPServer(TCPServer, CoroutineMixIn):
    pass

這樣一來,我們不需要複雜而龐大的繼承鏈,只要選擇組合不同的類的功能,就可以快速構造出所需的子類。

小結

由於Python允許使用多重繼承,因此,MixIn就是一種常見的設計。

只允許單一繼承的語言(如Java)不能使用MixIn的設計。

 

_str__( self )
用於將值轉化爲適於人閱讀的形式
簡單的調用方法 : str(obj)

這是因爲直接顯示變量調用的不是__str__(),而是__repr__(),兩者的區別是__str__()返回用戶看到的字符串,而__repr__()返回程序開發者看到的字符串,也就是說,__repr__()是爲調試服務的。

解決辦法是再定義一個__repr__()。但是通常__str__()__repr__()代碼都是一樣的,所以,有個偷懶的寫法:

class Student(object):
    def __init__(self, name):
        self.name = name
    def __str__(self):
        return 'Student object (name=%s)' % self.name
    __repr__ = __str__

 

__iter__

如果一個類想被用於for ... in循環,類似list或tuple那樣,就必須實現一個__iter__()方法,該方法返回一個迭代對象,然後,Python的for循環就會不斷調用該迭代對象的__next__()方法拿到循環的下一個值,直到遇到StopIteration錯誤時退出循環。

 

class Fib(object):
    def __init__(self):
        self.a, self.b = 0, 1 # 初始化兩個計數器a,b

    def __iter__(self):
        return self # 實例本身就是迭代對象,故返回自己

    def __next__(self):
        self.a, self.b = self.b, self.a + self.b # 計算下一個值
        if self.a > 100000: # 退出循環的條件
            raise StopIteration()
        return self.a # 返回下一個值

 

__getitem__

Fib實例雖然能作用於for循環,看起來和list有點像,但是,把它當成list來使用還是不行,比如,取第5個元素:

對於Fib卻報錯。原因是__getitem__()傳入的參數可能是一個int,也可能是一個切片對象slice,所以要做判斷:

class Fib(object):
    def __getitem__(self, n):
        if isinstance(n, int): # n是索引
            a, b = 1, 1
            for x in range(n):
                a, b = b, a + b
            return a
        if isinstance(n, slice): # n是切片
            start = n.start
            stop = n.stop
            if start is None:
                start = 0
            a, b = 1, 1
            L = []
            for x in range(stop):
                if x >= start:
                    L.append(a)
                a, b = b, a + b
            return L

 

也沒有對負數作處理,所以,要正確實現一個__getitem__()還是有很多工作要做的。

此外,如果把對象看成dict__getitem__()的參數也可能是一個可以作key的object,例如str

與之對應的是__setitem__()方法,把對象視作list或dict來對集合賦值。最後,還有一個__delitem__()方法,用於刪除某個元素。

總之,通過上面的方法,我們自己定義的類表現得和Python自帶的list、tuple、dict沒什麼區別,這完全歸功於動態語言的“鴨子類型”,不需要強制繼承某個接口。

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章