常見的幾種排序

  1. 快速排序

      從數列中挑出一個元素,稱爲 “基準”(pivot),重新排序數列,所有元素比基準值小的擺放在基準前面,所有元素比基準值大的擺在基準的後面(相同的數可以到任一邊)。在這個分區退出之後,該基準就處於數列的中間位置。這個稱爲分區(partition)操作。遞歸地(recursive)把小於基準值元素的子數列和大於基準值元素的子數列排序。

排序效果:

Visual-and-intuitive-feel-of-7-common-so








int PartSort(int* a, int left, int right)   //每步的排序
{
    int key = a[right];
    int begin = left;
    int end = right - 1;
    while (begin < end)
    {
        while (begin < end && a[begin] <= key)
        {
            ++begin;
        }
        while (begin < end && a[end] >= key)
        {
            --end;
        }
        if (begin < end)
        {
            swap(a[begin], a[end]);
        }
    }
    if (a[begin]>a[right])
    {
        swap(a[begin], a[right]);
        return begin;
    }
    else
    {
        return right;
    }
}

void QuickSort(int* a, int left, int right)   //快速排序
{
    assert(a);
    if (left >= right)
    {
        return;
    }
    int div = PartSort(a, left, right);
    QuickSort(a, left, div - 1);
    QuickSort(a, div + 1, right);
}

2.堆排序:

      堆積排序(Heapsort)是指利用堆這種數據結構所設計的一種排序算法。堆是一個近似完全二叉樹的結構,並同時滿足堆性質:即子結點的鍵值或索引總是小於(或者大於)它的父節點。


排序效果:

Visual-and-intuitive-feel-of-7-common-so


void AdjustDown(int* a,size_t size,size_t parents)    //大堆     下調
{
        assert(a);
        size_t child = parents * 2 + 1;
        while (child < size)
        {
            if (child + 1 < size && a[child + 1]>a[child])
            {
                ++child;
            }
            if (a[child]>a[parents])
            {
                swap(a[child], a[parents]);
                parents = child;
                child = parents * 2 + 1;
            }
            else
            {
                break;
            }
        }
}

void HeapSort(int* a, size_t size)   //堆排序
{
    assert(a);
    for (int i = (size - 2) / 2; i >= 0; i--)    //建堆
    {
        AdjustDown(a, size, i);
    }
    for (int i = 0; i < size; i++)
    {
        swap(a[0], a[size - i - 1]);
        AdjustDown(a, size - i-1, 0);
    }
}

3.選擇排序:

     選擇排序(Selection sort)是一種簡單直觀的排序算法。它的工作原理如下。首先在未排序序列中找到最小元素,存放到排序序列的起始位置,然後,再從剩餘未排序元素中繼續尋找最小元素,然後放到排序序列末尾。以此類推,直到所有元素均排序完畢。

效果如下:

Visual-and-intuitive-feel-of-7-common-so

void SelectSort(int* a, size_t size)   //選擇排序
{
    assert(a);
    for (size_t i = 0; i < size; i++)
    {
        int* p = a;
        for (size_t j = 0; j < size-i; j++)
        {
            if (*p < a[j])
            {
                p = &a[j];
            }
        }
        swap(*p, a[size-i-1]);
    }
    
}

4.冒泡排序:

       冒泡排序(Bubble Sort,臺灣譯爲:泡沫排序或氣泡排序)是一種簡單的排序算法。它重複地走訪過要排序的數列,一次比較兩個元素,如果他們的順序錯誤就把他們交換過來。走訪數列的工作是重複地進行直到沒有再需要交換,也就是說該數列已經排序完成。這個算法的名字由來是因爲越小的元素會經由交換慢慢“浮”到數列的頂端。

效果如下:

Visual-and-intuitive-feel-of-7-common-so

void BubbleSort(int* a,size_t size)    //冒泡排序
{
    for (int i = 0; i < size; i++)
    {
        for (int j = 0; j < size - i - 1; j++)
        {
            if (a[j]>a[j + 1])
            {
                swap(a[j], a[j + 1]);
            }
        }
    }

}

5.插入排序

介紹:
      插入排序(Insertion Sort)的算法描述是一種簡單直觀的排序算法。它的工作原理是通過構建有序序列,對於未排序數據,在已排序序列中從後向前掃描,找到相應位置並插入。插入排序在實現上,通常採用in-place排序(即只需用到O(1)的額外空間的排序),因而在從後向前掃描過程中,需要反覆把已排序元素逐步向後挪位,爲最新元素提供插入空間。


步驟:
1.從第一個元素開始,該元素可以認爲已經被排序

2.取出下一個元素,在已經排序的元素序列中從後向前掃描

3.如果該元素(已排序)大於新元素,將該元素移到下一位置

4.重複步驟3,直到找到已排序的元素小於或者等於新元素的位置
5.將新元素插入到該位置中
6.重複步驟2

void InsertSort(int *a, size_t size)    //插入排序
{
    assert(a);
    for (int i = 1; i < size - 1; i++)
    {
        int end =i;
        int tmp = a[i];
        while (end >= 0 && a[end-1]>tmp)
        {
            a[end] = a[end-i];
            --end;
        }
        a[end-1] = tmp;
    }
}

6.希爾排序

介紹:

希爾排序,也稱遞減增量排序算法,是插入排序的一種高速而穩定的改進版本。希爾排序是基於插入排序的以下兩點性質而提出改進方法的:

1、插入排序在對幾乎已經排好序的數據操作時, 效率高, 即可以達到線性排序的效率
2、但插入排序一般來說是低效的, 因爲插入排序每次只能將數據移動一位

排序效果:

Visual-and-intuitive-feel-of-7-common-so

void ShellSort(int* a, size_t size)     //希爾排序
{
    int gap = size;
    while (gap > 1)
    {
        gap = gap / 3 + 1;
        for (size_t i = 0; i<size - gap;i++)
        {
            int end =i;
            int tmp = a[end + gap];
            while (end >= 0 && a[end] > tmp)
            {
                a[end + gap] = a[end];
                end -= gap;
            }

            a[end + gap] = tmp;
        }
    }
}

這幾種排序的時間複雜度與空間複雜度如下表所示:

wKiom1c5NAvR9TNoAABY84pp8nM837.png




發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章