DMAuart

#ifndef __USART_H
#define __USART_H
#include “stdio.h”
#include “stm32f10x.h”
#include “sys.h”
//////////////////////////////////////////////////////////////////////////////////
//±¾³ÌÐòÖ»¹©Ñ§Ï°Ê¹Óã¬Î´¾­×÷ÕßÐí¿É£¬²»µÃÓÃÓÚÆäËüÈκÎÓÃ;
//ALIENTEK STM32¿ª·¢°å
//´®¿Ú1³õʼ»¯
//ÕýµãÔ­×Ó@ALIENTEK
//¼¼ÊõÂÛ̳:www.openedv.com
//ÐÞ¸ÄÈÕÆÚ:2012/8/18
//°æ±¾£ºV1.5
//°æȨËùÓУ¬µÁ°æ±Ø¾¿¡£
//Copyright© ¹ãÖÝÊÐÐÇÒíµç×ӿƼ¼ÓÐÏÞ¹«Ë¾ 2009-2019
//All rights reserved
//********************************************************************************
//V1.3ÐÞ¸Ä˵Ã÷
//Ö§³ÖÊÊÓ¦²»Í¬ÆµÂÊϵĴ®¿Ú²¨ÌØÂÊÉèÖÃ.
//¼ÓÈëÁ˶ÔprintfµÄÖ§³Ö
//Ôö¼ÓÁË´®¿Ú½ÓÊÕÃüÁÄÜ.
//ÐÞÕýÁËprintfµÚÒ»¸ö×Ö·û¶ªÊ§µÄbug
//V1.4ÐÞ¸Ä˵Ã÷
//1,Ð޸Ĵ®¿Ú³õʼ»¯IOµÄbug
//2,ÐÞ¸ÄÁËUSART_RX_STA,ʹµÃ´®¿Ú×î´ó½ÓÊÕ×Ö½ÚÊýΪ2µÄ14´Î·½
//3,Ôö¼ÓÁËUSART_REC_LEN,ÓÃÓÚ¶¨Òå´®¿Ú×î´óÔÊÐí½ÓÊÕµÄ×Ö½ÚÊý(²»´óÓÚ2µÄ14´Î·½)
//4,ÐÞ¸ÄÁËEN_USART1_RXµÄʹÄÜ·½Ê½
//V1.5ÐÞ¸Ä˵Ã÷
//1,Ôö¼ÓÁ˶ÔUCOSIIµÄÖ§³Ö
#define USART_REC_LEN 200 //¶¨Òå×î´ó½ÓÊÕ×Ö½ÚÊý 200
#define EN_USART1_RX 1 //ʹÄÜ£¨1£©/½ûÖ¹£¨0£©´®¿Ú1½ÓÊÕ

#define RecSta1 1
#define RecSta2 2
#define RecSta3 3
#define RecSta4 4
#define RecSta5 5
#define KBUart1 6
#define KBVersion 7

#define UART_RX_LEN 128
#define UART_TX_LEN 128

extern uint8_t Uart_Rx[UART_RX_LEN];

extern int Uart1_TxNum;
extern int Uart1_RxNum;
extern int Uart1_TxLen;
extern int Uart1_RxSta;
extern u8 Uart1_Buffer[16];
extern uint32_t Uart_Send_Buffer[];

extern u8 USART_RX_BUF[USART_REC_LEN]; //½ÓÊÕ»º³å,×î´óUSART_REC_LEN¸ö×Ö½Ú.Ä©×Ö½ÚΪ»»Ðзû
extern u16 USART_RX_STA; //½ÓÊÕ״̬±ê¼Ç

extern int ReceiveFlag;
extern int LedChannel;
extern int LedState;
extern int ReceiveState;
extern int UartSendTime;
extern int KBUartPIDAck;
extern int KBUartVIDAck;

//Èç¹ûÏë´®¿ÚÖжϽÓÊÕ£¬Ç벻ҪעÊÍÒÔϺ궨Òå
void uart_init(u32 bound);
void Uart1_Send_Byte(u8 Data);
void Uart1_Send_PVID(int Order);
void UartTimeDelay(int ms);

#endif

#include “sys.h”
#include “usart.h”
#include “stm32f10x_usart.h”
#include “LedControl.h”
//////////////////////////////////////////////////////////////////////////////////
//Èç¹ûʹÓÃucos,Ôò°üÀ¨ÏÂÃæµÄÍ·Îļþ¼´¿É.
#if SYSTEM_SUPPORT_OS
#include “includes.h” //ucos ʹÓÃ
#endif

//////////////////////////////////////////////////////////////////
//¼ÓÈëÒÔÏ´úÂë,Ö§³Öprintfº¯Êý,¶ø²»ÐèҪѡÔñuse MicroLIB
#if 1
#pragma import(__use_no_semihosting)
//±ê×¼¿âÐèÒªµÄÖ§³Öº¯Êý
struct __FILE
{
int handle;

};

FILE __stdout;
//¶¨Òå_sys_exit()ÒÔ±ÜÃâʹÓðëÖ÷»úģʽ
void _sys_exit(int x)
{
x = x;
}
//Öض¨Òåfputcº¯Êý
int fputc(int ch, FILE *f)
{
while((USART1->SR&0X40)==0);//Ñ­»··¢ËÍ,Ö±µ½·¢ËÍÍê±Ï
USART1->DR = (u8) ch;
return ch;
}
#endif

/ʹÓÃmicroLibµÄ·½·¨/
/*
int fputc(int ch, FILE *f)
{
USART_SendData(USART1, (uint8_t) ch);

while (USART_GetFlagStatus(USART1, USART_FLAG_TC) == RESET) {}	

return ch;

}
int GetKey (void) {

while (!(USART1->SR & USART_FLAG_RXNE));

return ((int)(USART1->DR & 0x1FF));

}
*/

//#if EN_USART1_RX //Èç¹ûʹÄÜÁ˽ÓÊÕ
//´®¿Ú1ÖжϷþÎñ³ÌÐò
//×¢Òâ,¶ÁÈ¡USARTx->SRÄܱÜÃâĪÃûÆäÃîµÄ´íÎó
u8 USART_RX_BUF[USART_REC_LEN]; //½ÓÊÕ»º³å,×î´óUSART_REC_LEN¸ö×Ö½Ú.
//½ÓÊÕ״̬
//bit15£¬ ½ÓÊÕÍê³É±êÖ¾
//bit14£¬ ½ÓÊÕµ½0x0d
//bit13~0£¬ ½ÓÊÕµ½µÄÓÐЧ×Ö½ÚÊýÄ¿
u16 USART_RX_STA=0; //½ÓÊÕ״̬±ê¼Ç

void uart_init(u32 bound){
//GPIO¶Ë¿ÚÉèÖÃ
GPIO_InitTypeDef GPIO_InitStructure;
USART_InitTypeDef USART_InitStructure;
NVIC_InitTypeDef NVIC_InitStructure;
DMA_InitTypeDef DMA_InitStructure;

RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1|RCC_APB2Periph_GPIOA, ENABLE);	//ʹÄÜUSART1£¬GPIOAʱÖÓ    
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE);

//*************´®¿ÚDMA·¢ËÍ¡¢½ÓÊÕ

//DMA·¢ËÍÖжÏÅäÖÃ
NVIC_InitStructure.NVIC_IRQChannel = DMA1_Channel4_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 3;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 2;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
//DMA1ͨµÀ4ÅäÖÃ
DMA_DeInit(DMA1_Channel4);
//ÍâÉèµØÖ·
DMA_InitStructure.DMA_PeripheralBaseAddr = (u32)(&USART1->DR);
//ÄÚ´æµØÖ·
DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t)Uart_Send_Buffer;
//dma´«Êä·½Ïòµ¥Ïò
DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralDST;
//ÉèÖÃDMAÔÚ´«Êäʱ»º³åÇøµÄ³¤¶È
DMA_InitStructure.DMA_BufferSize = 100;
//ÉèÖÃDMAµÄÍâÉèµÝÔöģʽ£¬Ò»¸öÍâÉè
DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
//ÉèÖÃDMAµÄÄÚ´æµÝÔöģʽ
DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;
//ÍâÉèÊý¾Ý×Ö³¤
DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Byte;
//ÄÚ´æÊý¾Ý×Ö³¤
DMA_InitStructure.DMA_MemoryDataSize = DMA_PeripheralDataSize_Byte;
//ÉèÖÃDMAµÄ´«Êäģʽ
DMA_InitStructure.DMA_Mode = DMA_Mode_Normal;
//ÉèÖÃDMAµÄÓÅÏȼ¶±ð
DMA_InitStructure.DMA_Priority = DMA_Priority_High;
//ÉèÖÃDMAµÄ2¸ömemoryÖеıäÁ¿»¥Ïà·ÃÎÊ
DMA_InitStructure.DMA_M2M = DMA_M2M_Disable;
DMA_Init(DMA1_Channel4,&DMA_InitStructure);
DMA_ITConfig(DMA1_Channel4,DMA_IT_TC,ENABLE);

//ʹÄÜͨµÀ4
//DMA_Cmd(DMA1_Channel4, ENABLE);

//´®¿ÚÊÕDMAÅäÖÃ
//Æô¶¯DMAʱÖÓ
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE);
//DMA1ͨµÀ5ÅäÖÃ
DMA_DeInit(DMA1_Channel5);
//ÍâÉèµØÖ·
DMA_InitStructure.DMA_PeripheralBaseAddr = (u32)(&USART1->DR);
//ÄÚ²ãµØÖ·
DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t)Uart_Rx;
//dma´«Êä·½Ïòµ¥Ïò
DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC;
//ÉèÖÃDMAÔÚ´«Êäʱ»º³åÇøµÄ³¤¶È
DMA_InitStructure.DMA_BufferSize = UART_RX_LEN;
//ÉèÖÃDMAµÄÍâÉèµÝÔöģʽ£¬Ò»¸öÍâÉè
DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
//ÉèÖÃDMAÄÚ´æµÝÔöģʽ
DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;
//ÍâÉèÊý¾Ý×Ö³¤
DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Byte;
//ÄÚ´æÊý¾Ý×Ö³¤
DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_Byte;
//ÉèÖÃDMAµÄ´«Êäģʽ
DMA_InitStructure.DMA_Mode = DMA_Mode_Normal;
//ÉèÖÃDMAµÄÓÅÏȼ¶±ð
DMA_InitStructure.DMA_Priority = DMA_Priority_VeryHigh;
//ÉèÖÃDMAµÄ2¸ömemoryÖеıäÁ¿»¥Ïà·ÃÎ
DMA_InitStructure.DMA_M2M = DMA_M2M_Disable;
DMA_Init(DMA1_Channel5,&DMA_InitStructure);

//ʹÄÜͨµÀ5
DMA_Cmd(DMA1_Channel5,ENABLE);


//ÖжÏÅäÖÃ
USART_ITConfig(USART1,USART_IT_TC,DISABLE);
USART_ITConfig(USART1,USART_IT_RXNE,DISABLE);
USART_ITConfig(USART1,USART_IT_IDLE,ENABLE);  


//ʹÄÜDMA·½Ê½·¢ËÍ
USART_DMACmd(USART1,USART_DMAReq_Tx,ENABLE);
//ʹÄÜDMA·½Ê½½ÓÊÕ
USART_DMACmd(USART1,USART_DMAReq_Rx,ENABLE);


//USART1_TX   GPIOA.9

GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9; //PA.9
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; //¸´ÓÃÍÆÍìÊä³ö
GPIO_Init(GPIOA, &GPIO_InitStructure);//³õʼ»¯GPIOA.9

//USART1_RX GPIOA.10³õʼ»¯
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;//PA10
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;//¸¡¿ÕÊäÈë
GPIO_Init(GPIOA, &GPIO_InitStructure);//³õʼ»¯GPIOA.10

//Usart1 NVIC ÅäÖÃ
NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority=2 ;//ÇÀÕ¼ÓÅÏȼ¶3
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 3; //×ÓÓÅÏȼ¶3
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //IRQͨµÀʹÄÜ
NVIC_Init(&NVIC_InitStructure); //¸ù¾ÝÖ¸¶¨µÄ²ÎÊý³õʼ»¯VIC¼Ä´æÆ÷

//USART ³õʼ»¯ÉèÖÃ

USART_InitStructure.USART_BaudRate = bound;//´®¿Ú²¨ÌØÂÊ
USART_InitStructure.USART_WordLength = USART_WordLength_8b;//×Ö³¤Îª8λÊý¾Ý¸ñʽ
USART_InitStructure.USART_StopBits = USART_StopBits_1;//Ò»¸öֹͣλ
USART_InitStructure.USART_Parity = USART_Parity_No;//ÎÞÆæżУÑéλ
USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;//ÎÞÓ²¼þÊý¾ÝÁ÷¿ØÖÆ
USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;	//ÊÕ·¢Ä£Ê½

USART_Init(USART1, &USART_InitStructure); //³õʼ»¯´®¿Ú1
USART_ITConfig(USART1, USART_IT_RXNE, ENABLE);//¿ªÆô´®¿Ú½ÓÊÜÖжÏ
// USART_ITConfig(USART1, USART_IT_TXE, ENABLE);
USART_Cmd(USART1, ENABLE); //ʹÄÜ´®¿Ú1
// USART_ITConfig(USART1, USART_IT_TC, ENABLE);//Tramsimssion Completeºó£¬²Å²úÉúÖжϣ¬¿ªTCÖжϱØÐë·ÅÓÚ´Ë£¬·ñÔò»¹ÊǻᶪʧµÚÒ»×Ö½Ú
}

void Uart1_Send_PVID(int Order)
{
u8 SendData4;
int i;
SendData[0] = 0xFE;
SendData1 = 0xEF;
switch(Order)
{
case KBUart1: SendData[0] = 0xFE;
SendData1 = 0xEF;
SendData2 = 0x7F;
SendData3 = 0x68;
for(i= 0;i < 4;i++)
{
Uart1_Send_Byte(SendData[i]);
UartTimeDelay(2);
}
break;

	case KBVersion:           
                                    SendData[0] = 0x02;
                                    SendData[1] = 0x27; 
									SendData[2] = 0xB1;
									SendData[3] = 0x02;
									for(i= 0;i < 4;i++)
									{
										Uart1_Send_Byte(SendData[i]);
										UartTimeDelay(2);
									}
									break;
 }

}

void Uart1_Send_Byte(u8 Data)
{

// USART_ClearFlag(USART1, USART_FLAG_TC); //·¢ËÍÍê³É±ê־룬·¢ËÍÍêµÚÒ»¸ö×Ö½Úºó²Å½øÈëÖжϣ¬ÐèÒªÏÈÇå³ý£¬·ñÔò¿ÉÄܻᶪʧµÚÒ»¸ö×Ö½ÚÊý¾Ý

USART_SendData(USART1,(u8)Data);
while(USART_GetFlagStatus(USART1,USART_FLAG_TXE)==RESET);   

// USART_ITConfig(USART1, USART_IT_TXE, ENABLE);
// if( USART_GetITStatus(USART1, USART_IT_TXE) == SET )
// {
// if( Data == ‘\0’ )
// {
// USART_ClearFlag(USART1, USART_FLAG_TC);
// }
// else
// USART_SendData(USART1,(u8)Data);
// }
// USART_ITConfig(USART1, USART_IT_TXE, DISABLE);

// while( Data != ‘\0’ )
// {
// while(USART_GetFlagStatus(USART1,USART_FLAG_TXE)==RESET);
// USART_SendData(USART1,(u8)Data);
// }

}

void USART1_IRQHandler(void) //´®¿Ú1ÖжϷþÎñ³ÌÐò
{
int Data;

// int Uart1_Tx=0;
// int Uart1_Rx=0;
// int Uart1_Sta=0;
// u8 Uart1_Buffer4; //ÓÉÓÚ´®¿Úÿ´ÎÖ»½ÓÊÕ1¸ö×Ö½Ú£¬Ã¿À´Ò»¸ö×Ö½Ú½øÒ»´ÎÖжϣ¬ËùÒÔÒªÏë¶à´Î½ÓÊÕ£¬buffer¼°Ïà¹Ø±äÁ¿¶¨Òå Ðë·Åµ½ÖжϺ¯ÊýÍâÃæ

/********************** DMA·¢Ëͻضà´Î·¢ËÍ ,»¹ÐèÒªµ÷ÊÔ ***************************/

uint32_t temp = 0;
uint16_t i = 0;

// printf("%s\r\n",“enter int”);

if (USART_GetFlagStatus(USART1, USART_FLAG_PE) != RESET)  

{
USART_ReceiveData(USART1);
USART_ClearFlag(USART1, USART_FLAG_PE);
}

if (USART_GetFlagStatus(USART1, USART_FLAG_ORE) != RESET)
{
USART_ReceiveData(USART1);
USART_ClearFlag(USART1, USART_FLAG_ORE);
}
if (USART_GetFlagStatus(USART1, USART_FLAG_FE) != RESET)
{
USART_ReceiveData(USART1);
USART_ClearFlag(USART1, USART_FLAG_FE);
}

if(USART_GetITStatus(USART1, USART_IT_IDLE) != RESET)
{
//USART_ClearFlag(USART1,USART_IT_IDLE);
temp = USART1->SR;
temp = USART1->DR; //ÇåUSART_IT_IDLE±ê×¢
DMA_Cmd(DMA1_Channel5,DISABLE);

	temp = UART_RX_LEN - DMA_GetCurrDataCounter(DMA1_Channel5);
	for (i = 0;i < temp;i++)
	{
		Data = Uart_Rx[i];
	  	//Æô¶¯´®¿Ú״̬»ú

// usart_state_run(); //ÒÑÏ¿ÉÒÔµ¥¶À·âװΪ״̬»ú³ÌÐò£¬ÓÃÀ´½ÓÊÕ
switch(ReceiveState)
{
// Data =USART_ReceiveData(USART1); //¶ÁÈ¡½ÓÊÕµ½µÄÊý¾Ý
case RecSta1:
if(Data == 0xFE)
{
ReceiveState = RecSta2;
// Uart1_Send_Byte(0xEF);
// printf("%s\r\n",“EF”);
}
else
ReceiveState = RecSta1;
break;
case RecSta2:
if(Data == 0xEF)
{
ReceiveState = RecSta3;
// Uart1_Send_Byte(0xFE);
// printf("%s\r\n",“FE”);
}
else
ReceiveState = RecSta1;
break;
case RecSta3:
if(Data == 0x7F)
{
// printf("%s\r\n",“7F”);
// Uart1_Send_Byte(0x7F);
ReceiveState = RecSta5;
}
else
{
LedChannel = Data;
ReceiveState = RecSta4;
}
break;
case RecSta4:
ReceiveFlag = 1;
LedState = Data;
ReceiveState = RecSta1;

                                    break;
            case RecSta5:
                                    if(Data == 0x8F)
                                    {
//                                        KBUartPIDAck=1;                                       
//                                          printf("%s\r\n","8F"); 
//                                          Uart1_Send_PVID(KBUart1);
                                          Uart1_Send_Byte(0xFE);
                                          Uart1_Send_Byte(0xEF);
                                          Uart1_Send_Byte(0x7F);
                                          Uart1_Send_Byte(0x68);                                        
                                          
                                    }
                                    else if(Data == 0xF8)
                                    {
//                                          KBUartVIDAck=1;                                       
//                                          printf("%s\r\n","F8"); 
//                                          Uart1_Send_PVID(KBVersion);
                                          Uart1_Send_Byte(0x02);
                                          Uart1_Send_Byte(0x27);
                                          Uart1_Send_Byte(0xB1);
                                          Uart1_Send_Byte(0x02);
                                    }
                                    
                                    ReceiveState = RecSta1;     //·¢ËÍÍê4×Ö½ÚÒԺ󣬱ØÐë»Øµ½sta1,·ñÔòºóÐøÎÞ·¨½øÈë½ÓÊÕ
                                    break;
            
            default:
                                    ReceiveState = RecSta1;
                                    break;
        }
    }

	//ÉèÖô«ÊäÊý¾Ý³¤¶È

// DMA_SetCurrDataCounter(DMA1_Channel5,UART_RX_LEN);
//´ò¿ªDMA
DMA_Cmd(DMA1_Channel5,ENABLE);
}

__nop(); 

//
// if(USART_GetITStatus(USART1, USART_IT_RXNE) != RESET) //½ÓÊÕÖжÏ
// {

//// USART_ClearFlag(USART1, USART_FLAG_RXNE);
//// USART_ClearITPendingBit(USART1, USART_IT_RXNE);
//// printf("%s\r\n",“Enter_receive”);
//
// Data =USART_ReceiveData(USART1); //¶ÁÈ¡½ÓÊÕµ½µÄÊý¾Ý
// switch(ReceiveState)
// {
//// Data =USART_ReceiveData(USART1); //¶ÁÈ¡½ÓÊÕµ½µÄÊý¾Ý
// case RecSta1:
// if(Data == 0xFE)
// {
// ReceiveState = RecSta2;
//// Uart1_Send_Byte(0xEF);
//// printf("%s\r\n",“EF”);
// }
// else
// ReceiveState = RecSta1;
// break;
// case RecSta2:
// if(Data == 0xEF)
// {
// ReceiveState = RecSta3;
//// Uart1_Send_Byte(0xFE);
//// printf("%s\r\n",“FE”);
// }
// else
// ReceiveState = RecSta1;
// break;
// case RecSta3:
// if(Data == 0x7F)
// {
//// printf("%s\r\n",“7F”);
//// Uart1_Send_Byte(0x7F);
// ReceiveState = RecSta5;
// }
// else
// {
// LedChannel = Data;
// ReceiveState = RecSta4;
// }
// break;
// case RecSta4:
// ReceiveFlag = 1;
// LedState = Data;
// ReceiveState = RecSta1;
//
// break;
// case RecSta5:
// if(Data == 0x8F)
// {
//// KBUartPIDAck=1;
//// printf("%s\r\n",“8F”);
//// Uart1_Send_PVID(KBUart1);
// Uart1_Send_Byte(0xFE);
// Uart1_Send_Byte(0xEF);
// Uart1_Send_Byte(0x7F);
// Uart1_Send_Byte(0x68);
//
// }
// else if(Data == 0xF8)
// {
//// KBUartVIDAck=1;
//// printf("%s\r\n",“F8”);
//// Uart1_Send_PVID(KBVersion);
// Uart1_Send_Byte(0x02);
// Uart1_Send_Byte(0x27);
// Uart1_Send_Byte(0xB1);
// Uart1_Send_Byte(0x02);
// }
//
// ReceiveState = RecSta1; //·¢ËÍÍê4×Ö½ÚÒԺ󣬱ØÐë»Øµ½sta1,·ñÔòºóÐøÎÞ·¨½øÈë½ÓÊÕ
// break;
//
// default:
// ReceiveState = RecSta1;
// break;
// }

// }

      LedConfigure.X86_ControlLed();	//X86µãµÆ

// if(KBUartPIDAck1)
// {
// KBUartPIDAck=0;
//// printf("%s\r\n",“EFFE7F68”);
//// Uart1_Send_PVID(KBUart1);
// Uart1_Send_Byte(0xEF);
// Uart1_Send_Byte(0xFE);
// Uart1_Send_Byte(0x7F);
// Uart1_Send_Byte(0x68);
// }
// if(KBUartVIDAck
1)
// {
// KBUartVIDAck=0;
//// printf("%s\r\n",“0223B100”);
//// Uart1_Send_PVID(KBVersion);
// Uart1_Send_Byte(0x02);
// Uart1_Send_Byte(0x25);
// Uart1_Send_Byte(0xB1);
// Uart1_Send_Byte(0x01);
// }

}

void UartTimeDelay(int ms)
{
UartSendTime = 0;
while(UartSendTime < ms);
}

//#endif


/******************** © COPYRIGHT 2017 PRETTA ********************

  • File Name : main.c
  • Author : Messi
  • Version : V0.0.1
  • Date : 011/11/2017
  • Description : USB Keyboard main file

Includes ------------------------------------------------------------------*/
#include “my_usb.h”
#include “gpio.h”
#include “keyboard.h”
#include “PowerSequence.h”
#include “stdio.h”
#include “TgcConfig.h”
#include “TimerConfig.h”
#include “sys.h”
#include “KnobConfig.h”
#include “LedControl.h”
#include “usart.h”
#include “stm32f10x_usart.h”

int LastSendData = 0;
int SendEna = 0;
int LastSendTimeCnt = 0;

int MultiKeyBuffer[16];
int OldScanCode[CombKeyNum];
int CurScanCode[CombKeyNum];
int TimeCnt = 0;
int TgcTimeCnt = 0;
int Tgc1sCnt = 0;
int KnobTimeCnt = 0;
int KeyboardTimeCnt = 0;
int UsbSendTimeCnt = 0;
int LedControlCnt = 0;
int KeyState = Idel;
int ShiftData = 0;
int UartSendTime = 0;

int KnobState1 = KnobWait;
int KnobState2 = KnobWait;
int KnobState3 = KnobWait;
int KnobState4 = KnobWait;
int KnobState5 = KnobWait;
int KnobState6 = KnobWait;
int KnobState7 = KnobWait;
int KnobState8 = KnobWait;

int THI_State = 0;
int Freeze_State = 0;
int B_State = 0;
int M_State = 0;
int CFM_State = 0;
int PW_State = 0;
int CW_State = 0;

int THI_Led = 0;
int Freeze_Led = 0;
int B_Led = 0 ;
int M_Led = 0;
int CFM_Led = 0;
int PW_Led = 0;
int CW_Led = 0;

int ReceiveFlag = 0;
int LedChannel = 0;
int LedState = 0;
int ReceiveState = RecSta1;
int KBUartPIDAck = 0;
int KBUartVIDAck = 0;

int Uart1_TxNum=0;
int Uart1_RxNum=0;
int Uart1_TxLen=0;
int Uart1_RxSta=0;
u8 Uart1_Buffer[16];

uint8_t TgcOldData_0 = 0;
uint8_t TgcOldData_1 = 0;
uint8_t TgcOldData_2 = 0;
uint8_t TgcOldData_3 = 0;
uint8_t TgcOldData_4 = 0;
uint8_t TgcOldData_5 = 0;
uint8_t TgcOldData_6 = 0;
uint8_t TgcOldData_7 = 0;

uint8_t Uart_Rx[UART_RX_LEN] = {0};
uint32_t Uart_Send_Buffer[UART_TX_LEN] = {0};

int main(void)
{
UsbInitial(); //USB³õʼ»¯
TgcConfigure.TgcAdcInitial(); //TGC³õʼ»¯
GpioInitial(); //¼üÅÌGPIO³õʼ»¯
TimerConfigure.TimerInitial(); //¶¨Ê±Æ÷³õʼ»¯
LedConfigure.LedInitial();
NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);
uart_init(115200);
// LedConfigure.LedInitial(); //X86µãµÆ
while(1)
{

	KeyboardDrive.KeySendToUsb();		//¼ì²â°´¼ü²¢Í¨¹ýUSB·¢ËÍ
	TgcConfigure.TgcSendUsb();			//TGC¼ì²â²¢Í¨¹ýUSB·¢ËÍ
	KnobConfigure.KnobSendUsb();		//ÐýÅ¥¼ì²â²¢Í¨¹ýUSB·¢ËÍ

// uart_init(115200);

}

}

歡迎使用Markdown編輯器

你好! 這是你第一次使用 Markdown編輯器 所展示的歡迎頁。如果你想學習如何使用Markdown編輯器, 可以仔細閱讀這篇文章,瞭解一下Markdown的基本語法知識。

新的改變

我們對Markdown編輯器進行了一些功能拓展與語法支持,除了標準的Markdown編輯器功能,我們增加了如下幾點新功能,幫助你用它寫博客:

  1. 全新的界面設計 ,將會帶來全新的寫作體驗;
  2. 在創作中心設置你喜愛的代碼高亮樣式,Markdown 將代碼片顯示選擇的高亮樣式 進行展示;
  3. 增加了 圖片拖拽 功能,你可以將本地的圖片直接拖拽到編輯區域直接展示;
  4. 全新的 KaTeX數學公式 語法;
  5. 增加了支持甘特圖的mermaid語法1 功能;
  6. 增加了 多屏幕編輯 Markdown文章功能;
  7. 增加了 焦點寫作模式、預覽模式、簡潔寫作模式、左右區域同步滾輪設置 等功能,功能按鈕位於編輯區域與預覽區域中間;
  8. 增加了 檢查列表 功能。

功能快捷鍵

撤銷:Ctrl/Command + Z
重做:Ctrl/Command + Y
加粗:Ctrl/Command + B
斜體:Ctrl/Command + I
標題:Ctrl/Command + Shift + H
無序列表:Ctrl/Command + Shift + U
有序列表:Ctrl/Command + Shift + O
檢查列表:Ctrl/Command + Shift + C
插入代碼:Ctrl/Command + Shift + K
插入鏈接:Ctrl/Command + Shift + L
插入圖片:Ctrl/Command + Shift + G

合理的創建標題,有助於目錄的生成

直接輸入1次#,並按下space後,將生成1級標題。
輸入2次#,並按下space後,將生成2級標題。
以此類推,我們支持6級標題。有助於使用TOC語法後生成一個完美的目錄。

如何改變文本的樣式

強調文本 強調文本

加粗文本 加粗文本

標記文本

刪除文本

引用文本

H2O is是液體。

210 運算結果是 1024.

插入鏈接與圖片

鏈接: link.

圖片: Alt

帶尺寸的圖片: Alt

居中的圖片: Alt

居中並且帶尺寸的圖片: Alt

當然,我們爲了讓用戶更加便捷,我們增加了圖片拖拽功能。

如何插入一段漂亮的代碼片

博客設置頁面,選擇一款你喜歡的代碼片高亮樣式,下面展示同樣高亮的 代碼片.

// An highlighted block
var foo = 'bar';

生成一個適合你的列表

  • 項目
    • 項目
      • 項目
  1. 項目1
  2. 項目2
  3. 項目3
  • 計劃任務
  • 完成任務

創建一個表格

一個簡單的表格是這麼創建的:

項目 Value
電腦 $1600
手機 $12
導管 $1

設定內容居中、居左、居右

使用:---------:居中
使用:----------居左
使用----------:居右

第一列 第二列 第三列
第一列文本居中 第二列文本居右 第三列文本居左

SmartyPants

SmartyPants將ASCII標點字符轉換爲“智能”印刷標點HTML實體。例如:

TYPE ASCII HTML
Single backticks 'Isn't this fun?' ‘Isn’t this fun?’
Quotes "Isn't this fun?" “Isn’t this fun?”
Dashes -- is en-dash, --- is em-dash – is en-dash, — is em-dash

創建一個自定義列表

Markdown
Text-to-HTML conversion tool
Authors
John
Luke

如何創建一個註腳

一個具有註腳的文本。2

註釋也是必不可少的

Markdown將文本轉換爲 HTML

KaTeX數學公式

您可以使用渲染LaTeX數學表達式 KaTeX:

Gamma公式展示 Γ(n)=(n1)!nN\Gamma(n) = (n-1)!\quad\forall n\in\mathbb N 是通過歐拉積分

Γ(z)=0tz1etdt&ThinSpace;. \Gamma(z) = \int_0^\infty t^{z-1}e^{-t}dt\,.

你可以找到更多關於的信息 LaTeX 數學表達式here.

新的甘特圖功能,豐富你的文章

Mon 06Mon 13Mon 20已完成 進行中 計劃一 計劃二 現有任務Adding GANTT diagram functionality to mermaid
  • 關於 甘特圖 語法,參考 這兒,

UML 圖表

可以使用UML圖表進行渲染。 Mermaid. 例如下面產生的一個序列圖::

張三李四王五你好!李四, 最近怎麼樣?你最近怎麼樣,王五?我很好,謝謝!我很好,謝謝!李四想了很長時間,文字太長了不適合放在一行.打量着王五...很好... 王五, 你怎麼樣?張三李四王五

這將產生一個流程圖。:

鏈接
長方形
圓角長方形
菱形
  • 關於 Mermaid 語法,參考 這兒,

FLowchart流程圖

我們依舊會支持flowchart的流程圖:

Created with Raphaël 2.2.0開始我的操作確認?結束yesno
  • 關於 Flowchart流程圖 語法,參考 這兒.

導出與導入

導出

如果你想嘗試使用此編輯器, 你可以在此篇文章任意編輯。當你完成了一篇文章的寫作, 在上方工具欄找到 文章導出 ,生成一個.md文件或者.html文件進行本地保存。

導入

如果你想加載一篇你寫過的.md文件或者.html文件,在上方工具欄可以選擇導入功能進行對應擴展名的文件導入,
繼續你的創作。


  1. mermaid語法說明 ↩︎

  2. 註腳的解釋 ↩︎

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章