數據結構排序算法總結

一、插入排序

1.直接插入排序(Insertion Sort)

插入排序(Insertion-Sort)的算法描述是一種簡單直觀的排序算法。它的工作原理是通過構建有序序列,對於未排序數據,在已排序序列中從後向前掃描,找到相應位置並插入。插入排序在實現上,通常採用in-place排序(即只需用到O(1)的額外空間的排序),因而在從後向前掃描過程中,需要反覆把已排序元素逐步向後挪位,爲最新元素提供插入空間。

具體算法過程如下:

算法分析

最佳情況:T(n) = O(n)   最壞情況:T(n) = O(n2)   平均情況:T(n) = O(n2) 穩定

2.折半插入排序(Binary Insertion Sort)

有一組數據待排序,排序區間爲Array[0]~Array[n-1]。將數據分爲有序數據和無序數據,第一次排序時默認Array[0]爲有序數據,Array[1]~Array[n-1]爲無序數據。有序數據分區的第一個元素位置爲low,最後一個元素的位置爲high。

 

算法分析

最佳情況:T(n) = O(nlog2n)   最壞情況:T(n) = O(n2)   平均情況:T(n) = O(n2) 穩定

3.希爾排序(Shell Sort)

希爾排序也是一種插入排序,也稱爲縮小增量排序,同時該算法是衝破O(n2)的第一批算法之一。它與插入排序的不同之處在於,它會優先比較距離較遠的元素。

3.1 算法描述

我們來看下希爾排序的基本步驟,在此我們選擇增量gap=length/2,縮小增量繼續以gap = gap/2的方式,這種增量選擇我們可以用一個序列來表示,{n/2,(n/2)/2...1},稱爲增量序列。希爾排序的增量序列的選擇與證明是個數學難題,我們選擇的這個增量序列是比較常用的,也是希爾建議的增量,稱爲希爾增量,但其實這個增量序列不是最優的。此處我們做示例使用希爾增量。

先將整個待排序的記錄序列分割成爲若干子序列分別進行直接插入排序,具體算法描述:

  • 選擇一個增量序列t1,t2,…,tk,其中ti>tj,tk=1;
  • 按增量序列個數k,對序列進行k 趟排序;
  • 每趟排序,根據對應的增量ti,將待排序列分割成若干長度爲m 的子序列,分別對各子表進行直接插入排序。僅增量因子爲1 時,整個序列作爲一個表來處理,表長度即爲整個序列的長度。

3.2 過程演示

3.3 代碼實現


3.4 算法分析

最佳情況:T(n) = O(nlog2 n)  最壞情況:T(n) = O(nlog2 n)  平均情況:T(n) =O(nlog2n) 不穩定

二、交換排序

4.冒泡排序(Bubble Sort)

冒泡排序是一種簡單的排序算法。它重複地走訪過要排序的數列,一次比較兩個元素,如果它們的順序錯誤就把它們交換過來。走訪數列的工作是重複地進行直到沒有再需要交換,也就是說該數列已經排序完成。這個算法的名字由來是因爲越小的元素會經由交換慢慢“浮”到數列的頂端。

4.1 算法描述

  • 比較相鄰的元素。如果第一個比第二個大,就交換它們兩個;
  • 對每一對相鄰元素作同樣的工作,從開始第一對到結尾的最後一對,這樣在最後的元素應該會是最大的數;
  • 針對所有的元素重複以上的步驟,除了最後一個;
  • 重複步驟1~3,直到排序完成。

4.2 動圖演示

4.3 代碼實現


4.4 算法分析

最佳情況:T(n) = O(n)   最差情況:T(n) = O(n2)   平均情況:T(n) = O(n2) 穩定

5.快速排序(Quick Sort)

快速排序的基本思想:通過一趟排序將待排記錄分隔成獨立的兩部分,其中一部分記錄的關鍵字均比另一部分的關鍵字小,則可分別對這兩部分記錄繼續進行排序,以達到整個序列有序。

5.1 算法描述

快速排序使用分治法來把一個串(list)分爲兩個子串(sub-lists)。具體算法描述如下:

  • 從數列中挑出一個元素,稱爲 “基準”(pivot);
  • 重新排序數列,所有元素比基準值小的擺放在基準前面,所有元素比基準值大的擺在基準的後面(相同的數可以到任一邊)。在這個分區退出之後,該基準就處於數列的中間位置。這個稱爲分區(partition)操作;
  • 遞歸地(recursive)把小於基準值元素的子數列和大於基準值元素的子數列排序。

5.2 動圖演示

5.3代碼實現:

#快速排序 傳入列表、開始位置和結束位置
def quick_sort( li , start , end ):
    # 如果start和end碰頭了,說明要我排的這個子數列就剩下一個數了,就不用排序了
    if not start < end :
        return

    mid = li[start] #拿出第一個數當作基準數mid
    low = start   #low來標記左側從基準數始找比mid大的數的位置
    high = end  #high來標記右側end向左找比mid小的數的位置

    # 我們要進行循環,只要low和high沒有碰頭就一直進行,當low和high相等說明碰頭了
    while low < high :
        #從high開始向左,找到第一個比mid小或者等於mid的數,標記位置,(如果high的數比mid大,我們就左移high)
        # 並且我們要確定找到之前,如果low和high碰頭了,也不找了
        while low < high and li[high] > mid :
            high -= 1
        #跳出while後,high所在的下標就是找到的右側比mid小的數
        #把找到的數放到左側的空位 low 標記了這個空位
        li[low] = li[high]
        # 從low開始向右,找到第一個比mid大的數,標記位置,(如果low的數小於等於mid,我們就右移low)
        # 並且我們要確定找到之前,如果low和high碰頭了,也不找了
        while low < high and li[low] <= mid :
            low += 1
        #跳出while循環後low所在的下標就是左側比mid大的數所在位置
        # 我們把找到的數放在右側空位上,high標記了這個空位
        li[high] = li[low]
        #以上我們完成了一次 從右側找到一個小數移到左側,從左側找到一個大數移動到右側
    #當這個while跳出來之後相當於low和high碰頭了,我們把mid所在位置放在這個空位
    li[low] = mid
    #這個時候mid左側看的數都比mid小,mid右側的數都比mid大

    #然後我們對mid左側所有數進行上述的排序
    quick_sort( li , start, low-1 )
    #我們mid右側所有數進行上述排序
    quick_sort( li , low +1 , end )
 

#ok我們實踐一下
if __name__ == '__main__':
    li = [5,4,3,2,1]
    quick_sort(li , 0 , len(li) -1 )
    print(li)

5.4  算法分析

最佳情況:T(n) = O(nlogn)   最差情況:T(n) = O(n2)   平均情況:T(n) = O(nlogn)  不穩定

三、選擇排序

6.簡單選擇排序(Selection Sort)

它的工作原理:首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然後,再從剩餘未排序元素中繼續尋找最小(大)元素,然後放到已排序序列的末尾。以此類推,直到所有元素均排序完畢。

6.1 算法描述

n個記錄的直接選擇排序可經過n-1趟直接選擇排序得到有序結果。具體算法描述如下:

  • 初始狀態:無序區爲R[1..n],有序區爲空;
  • 第i趟排序(i=1,2,3…n-1)開始時,當前有序區和無序區分別爲R[1..i-1]和R(i..n)。該趟排序從當前無序區中-選出關鍵字最小的記錄 R[k],將它與無序區的第1個記錄R交換,使R[1..i]和R[i+1..n)分別變爲記錄個數增加1個的新有序區和記錄個數減少1個的新無序區;
  • n-1趟結束,數組有序化了。

6.2 動圖演示
6.3 代碼實現
6.4 算法分析

最佳情況:T(n) = O(n2)  最差情況:T(n) = O(n2)  平均情況:T(n) = O(n2)

7.堆排序

堆排序(Heapsort)是指利用堆這種數據結構所設計的一種排序算法。堆積是一個近似完全二叉樹的結構,並同時滿足堆積的性質:即子結點的鍵值或索引總是小於(或者大於)它的父節點。

7.1 算法描述

  • 將初始待排序關鍵字序列(R1,R2….Rn)構建成大頂堆,此堆爲初始的無序區;
  • 將堆頂元素R[1]與最後一個元素R[n]交換,此時得到新的無序區(R1,R2,……Rn-1)和新的有序區(Rn),且滿足R[1,2…n-1]<=R[n];
  • 由於交換後新的堆頂R[1]可能違反堆的性質,因此需要對當前無序區(R1,R2,……Rn-1)調整爲新堆,然後再次將R[1]與無序區最後一個元素交換,得到新的無序區(R1,R2….Rn-2)和新的有序區(Rn-1,Rn)。不斷重複此過程直到有序區的元素個數爲n-1,則整個排序過程完成。

7.2 動圖演示

7.3 代碼實現

注意:這裏用到了完全二叉樹的部分性質:

7.4 算法分析

最佳情況:T(n) = O(nlogn) 最差情況:T(n) = O(nlogn) 平均情況:T(n) = O(nlogn) 不穩定

四、歸併排序

8.歸併排序

和選擇排序一樣,歸併排序的性能不受輸入數據的影響,但表現比選擇排序好的多,因爲始終都是O(n log n)的時間複雜度。代價是需要額外的內存空間。

歸併排序是建立在歸併操作上的一種有效的排序算法。該算法是採用分治法(Divide and Conquer)的一個非常典型的應用。歸併排序是一種穩定的排序方法。將已有序的子序列合併,得到完全有序的序列;即先使每個子序列有序,再使子序列段間有序。若將兩個有序表合併成一個有序表,稱爲2-路歸併。

8.1 算法描述

  • 把長度爲n的輸入序列分成兩個長度爲n/2的子序列;
  • 對這兩個子序列分別採用歸併排序;
  • 將兩個排序好的子序列合併成一個最終的排序序列。

8.2 動圖演示
8.3 代碼實現

8. 4 算法分析

最佳情況:T(n) = O(n)  最差情況:T(n) = O(nlogn)  平均情況:T(n) = O(nlogn) 穩定

五、基數排序

9、基數排序

基數排序也是非比較的排序算法,對每一位進行排序,從最低位開始排序,複雜度爲O(kn),爲數組長度,k爲數組中的數的最大的位數;

基數排序是按照低位先排序,然後收集;再按照高位排序,然後再收集;依次類推,直到最高位。有時候有些屬性是有優先級順序的,先按低優先級排序,再按高優先級排序。最後的次序就是高優先級高的在前,高優先級相同的低優先級高的在前。基數排序基於分別排序,分別收集,所以是穩定的。

9.1 算法描述

  • 取得數組中的最大數,並取得位數;
  • arr爲原始數組,從最低位開始取每個位組成radix數組;
  • 對radix進行計數排序(利用計數排序適用於小範圍數的特點);

9.2 動圖演示
9.3 代碼實現
9.4 算法分析

最佳情況:T(n) = O(n * k)   最差情況:T(n) = O(n * k)   平均情況:T(n) = O(n * k) 穩定

基數排序有兩種方法:

MSD 從高位開始進行排序 LSD 從低位開始進行排序

基數排序 vs 計數排序 vs 桶排序

這三種排序算法都利用了桶的概念,但對桶的使用方法上有明顯差異:

  • 基數排序:根據鍵值的每位數字來分配桶
  • 計數排序:每個桶只存儲單一鍵值
  • 桶排序:每個桶存儲一定範圍的數值

10、計數排序(Counting Sort)

計數排序的核心在於將輸入的數據值轉化爲鍵存儲在額外開闢的數組空間中。 作爲一種線性時間複雜度的排序,計數排序要求輸入的數據必須是有確定範圍的整數。

計數排序(Counting sort)是一種穩定的排序算法。計數排序使用一個額外的數組C,其中第i個元素是待排序數組A中值等於i的元素的個數。然後根據數組C來將A中的元素排到正確的位置。它只能對整數進行排序。

10.1 算法描述

  • 找出待排序的數組中最大和最小的元素;
  • 統計數組中每個值爲i的元素出現的次數,存入數組C的第i項;
  • 對所有的計數累加(從C中的第一個元素開始,每一項和前一項相加);
  • 反向填充目標數組:將每個元素i放在新數組的第C(i)項,每放一個元素就將C(i)減去1。

10.2 動圖演示
10.3 代碼實現
10.4 算法分析

當輸入的元素是n 個0到k之間的整數時,它的運行時間是 O(n + k)。計數排序不是比較排序,排序的速度快於任何比較排序算法。由於用來計數的數組C的長度取決於待排序數組中數據的範圍(等於待排序數組的最大值與最小值的差加上1),這使得計數排序對於數據範圍很大的數組,需要大量時間和內存。

最佳情況:T(n) = O(n+k)  最差情況:T(n) = O(n+k)  平均情況:T(n) = O(n+k) 穩定

11.桶排序

桶排序是計數排序的升級版。它利用了函數的映射關係,高效與否的關鍵就在於這個映射函數的確定。

桶排序 (Bucket sort)的工作的原理:假設輸入數據服從均勻分佈,將數據分到有限數量的桶裏,每個桶再分別排序(有可能再使用別的排序算法或是以遞歸方式繼續使用桶排序進行排

9.1 算法描述

  • 人爲設置一個BucketSize,作爲每個桶所能放置多少個不同數值(例如當BucketSize==5時,該桶可以存放{1,2,3,4,5}這幾種數字,但是容量不限,即可以存放100個3);
  • 遍歷輸入數據,並且把數據一個一個放到對應的桶裏去;
  • 對每個不是空的桶進行排序,可以使用其它排序方法,也可以遞歸使用桶排序;
  • 從不是空的桶裏把排好序的數據拼接起來。

注意,如果遞歸使用桶排序爲各個桶排序,則當桶數量爲1時要手動減小BucketSize增加下一循環桶的數量,否則會陷入死循環,導致內存溢出。

9.2 圖片演示

9.3 代碼實現

9.4 算法分析

桶排序最好情況下使用線性時間O(n),桶排序的時間複雜度,取決與對各個桶之間數據進行排序的時間複雜度,因爲其它部分的時間複雜度都爲O(n)。很顯然,桶劃分的越小,各個桶之間的數據越少,排序所用的時間也會越少。但相應的空間消耗就會增大。

最佳情況:T(n) = O(n+k)   最差情況:T(n) = O(n+k)   平均情況:T(n) = O(n2)  穩定

 

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章