Stanford-CS231n-assignment2-Dropout

1- layers.py中dropout部分實現

def dropout_forward(x, dropout_param):
    """
    Performs the forward pass for (inverted) dropout.

    Inputs:
    - x: Input data, of any shape
    - dropout_param: A dictionary with the following keys:
      - p: Dropout parameter. We keep each neuron output with probability p.
      - mode: 'test' or 'train'. If the mode is train, then perform dropout;
        if the mode is test, then just return the input.
      - seed: Seed for the random number generator. Passing seed makes this
        function deterministic, which is needed for gradient checking but not
        in real networks.

    Outputs:
    - out: Array of the same shape as x.
    - cache: tuple (dropout_param, mask). In training mode, mask is the dropout
      mask that was used to multiply the input; in test mode, mask is None.

    NOTE: Please implement **inverted** dropout, not the vanilla version of dropout.
    See http://cs231n.github.io/neural-networks-2/#reg for more details.

    NOTE 2: Keep in mind that p is the probability of **keep** a neuron
    output; this might be contrary to some sources, where it is referred to
    as the probability of dropping a neuron output.
    """
    p, mode = dropout_param['p'], dropout_param['mode']
    if 'seed' in dropout_param:
        np.random.seed(dropout_param['seed'])

    mask = None
    out = None

    if mode == 'train':
        #######################################################################
        # TODO: Implement training phase forward pass for inverted dropout.   #
        # Store the dropout mask in the mask variable.                        #
        #######################################################################
        # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****

        mask = (np.random.rand(*x.shape) < p) / p
        out = x * mask

        # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
        #######################################################################
        #                           END OF YOUR CODE                          #
        #######################################################################
    elif mode == 'test':
        #######################################################################
        # TODO: Implement the test phase forward pass for inverted dropout.   #
        #######################################################################
        # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****

        out = x

        # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
        #######################################################################
        #                            END OF YOUR CODE                         #
        #######################################################################

    cache = (dropout_param, mask)
    out = out.astype(x.dtype, copy=False)

    return out, cache


def dropout_backward(dout, cache):
    """
    Perform the backward pass for (inverted) dropout.

    Inputs:
    - dout: Upstream derivatives, of any shape
    - cache: (dropout_param, mask) from dropout_forward.
    """
    dropout_param, mask = cache
    mode = dropout_param['mode']

    dx = None
    if mode == 'train':
        #######################################################################
        # TODO: Implement training phase backward pass for inverted dropout   #
        #######################################################################
        # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****

        dx = dout * mask

        # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
        #######################################################################
        #                          END OF YOUR CODE                           #
        #######################################################################
    elif mode == 'test':
        dx = dout
    return dx

2- layer_utils.py加入的幾個dropout層函數

def affine_bn_relu_dropout_forward(x, w, b, gamma, beta, bn_param, dropout_param):
    """
    affine-bn-relu-dropout layer
    """
    
    a, fc_cache = affine_forward(x, w, b)
    bn, bn_cache = batchnorm_forward(a, gamma, beta, bn_param)
    relu, relu_cache = relu_forward(bn)
    out, dropout_cache = dropout_forward(relu, dropout_param)
    cache = (fc_cache, bn_cache, relu_cache, dropout_cache)
    
    return out, cache


def affine_bn_relu_dropout_backward(dout, cache):
    """
    affine-bn-relu-dropout backward layer
    """
    fc_cache, bn_cache, relu_cache, dropout_cache = cache
    ddropout = dropout_backward(dout, dropout_cache)
    drelu = relu_backward(ddropout, relu_cache)
    dbn, dgamma, dbeta = batchnorm_backward(drelu, bn_cache)
    dx, dw, db = affine_backward(dbn, fc_cache)
    
    return dx, dw, db, dgamma, dbeta


def affine_ln_relu_dropout_forward(x, w, b, gamma, beta, ln_param, dropout_param):
    """
    affine-ln-relu-dropout layer
    """
    
    a, fc_cache = affine_forward(x, w, b)
    ln, ln_cache = layernorm_forward(a, gamma, beta, ln_param)
    relu, relu_cache = relu_forward(ln)
    out, dropout_cache = dropout_forward(relu, dropout_param)
    cache = (fc_cache, ln_cache, relu_cache, dropout_cache)
    
    return out, cache


def affine_ln_relu_dropout_backward(dout, cache):
    """
    affine-ln-relu-dropout backward layer
    """
    
    fc_cache, ln_cache, relu_cache, dropout_cache = cache
    ddropout = dropout_backward(dout, dropout_cache)
    drelu = relu_backward(ddropout, relu_cache)
    dln, dgamma, dbeta = layernorm_backward(drelu, ln_cache)
    dx, dw, db = affine_backward(dln, fc_cache)
    
    return dx, dw, db, dgamma, dbeta


def affine_relu_dropout_forward(x, w, b, dropout_param):
    
    a, fc_cache = affine_forward(x, w, b)
    relu_out, relu_cache = relu_forward(a)
    out, dropout_cache = dropout_forward(relu_out, dropout_param)
    cache = (fc_cache, relu_cache, dropout_cache)
    
    return out, cache


def affine_relu_dropout_backward(dout, cache):
    
    fc_cache, relu_cache, dropout_cache = cache
    
    ddropout = dropout_backward(dout, dropout_cache)
    da = relu_backward(ddropout, relu_cache)
    dx, dw, db = affine_backward(da, fc_cache)
    
    return dx, dw, db

3- fc_net.py的修改,加入dropout判斷

其實在這段代碼中,可以有更簡化的寫法,不必每次都要判斷是否使用了dropout層,可以在其餘的函數實現中添加這一項的判斷,從而省去冗餘的判斷代碼,這裏只是不想改別的地方了,所以每次forward和backward都判斷了是否進行dropout,實際上會有更簡潔的寫法。

from builtins import range
from builtins import object
import numpy as np

from cs231n.layers import *
from cs231n.layer_utils import *


class TwoLayerNet(object):
    """
    A two-layer fully-connected neural network with ReLU nonlinearity and
    softmax loss that uses a modular layer design. We assume an input dimension
    of D, a hidden dimension of H, and perform classification over C classes.

    The architecure should be affine - relu - affine - softmax.

    Note that this class does not implement gradient descent; instead, it
    will interact with a separate Solver object that is responsible for running
    optimization.

    The learnable parameters of the model are stored in the dictionary
    self.params that maps parameter names to numpy arrays.
    """

    def __init__(self, input_dim=3*32*32, hidden_dim=100, num_classes=10,
                 weight_scale=1e-3, reg=0.0):
        """
        Initialize a new network.

        Inputs:
        - input_dim: An integer giving the size of the input
        - hidden_dim: An integer giving the size of the hidden layer
        - num_classes: An integer giving the number of classes to classify
        - weight_scale: Scalar giving the standard deviation for random
          initialization of the weights.
        - reg: Scalar giving L2 regularization strength.
        """
        self.params = {}
        self.reg = reg

        ############################################################################
        # TODO: Initialize the weights and biases of the two-layer net. Weights    #
        # should be initialized from a Gaussian centered at 0.0 with               #
        # standard deviation equal to weight_scale, and biases should be           #
        # initialized to zero. All weights and biases should be stored in the      #
        # dictionary self.params, with first layer weights                         #
        # and biases using the keys 'W1' and 'b1' and second layer                 #
        # weights and biases using the keys 'W2' and 'b2'.                         #
        ############################################################################
        # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****

        self.params['W1'] = np.random.randn(input_dim, hidden_dim) * weight_scale
        self.params['b1'] = np.zeros(hidden_dim)
        self.params['W2'] = np.random.randn(hidden_dim, num_classes) * weight_scale
        self.params['b2'] = np.zeros(num_classes)
        pass

        # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
        ############################################################################
        #                             END OF YOUR CODE                             #
        ############################################################################


    def loss(self, X, y=None):
        """
        Compute loss and gradient for a minibatch of data.

        Inputs:
        - X: Array of input data of shape (N, d_1, ..., d_k)
        - y: Array of labels, of shape (N,). y[i] gives the label for X[i].

        Returns:
        If y is None, then run a test-time forward pass of the model and return:
        - scores: Array of shape (N, C) giving classification scores, where
          scores[i, c] is the classification score for X[i] and class c.

        If y is not None, then run a training-time forward and backward pass and
        return a tuple of:
        - loss: Scalar value giving the loss
        - grads: Dictionary with the same keys as self.params, mapping parameter
          names to gradients of the loss with respect to those parameters.
        """
        scores = None
        ############################################################################
        # TODO: Implement the forward pass for the two-layer net, computing the    #
        # class scores for X and storing them in the scores variable.              #
        ############################################################################
        # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****

        #z1 = (X.reshape(X.shape[0], -1)).dot(self.params['W1']) + self.params['b1']
        z1, cache_fc1 = affine_forward(X, self.params['W1'], self.params['b1'])
        a1, cache_relu = relu_forward(z1)
        scores, cache_fc2 = affine_forward(a1, self.params['W2'], self.params['b2'])
        pass

        # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
        ############################################################################
        #                             END OF YOUR CODE                             #
        ############################################################################

        # If y is None then we are in test mode so just return scores
        if y is None:
            return scores

        loss, grads = 0, {}
        ############################################################################
        # TODO: Implement the backward pass for the two-layer net. Store the loss  #
        # in the loss variable and gradients in the grads dictionary. Compute data #
        # loss using softmax, and make sure that grads[k] holds the gradients for  #
        # self.params[k]. Don't forget to add L2 regularization!                   #
        #                                                                          #
        # NOTE: To ensure that your implementation matches ours and you pass the   #
        # automated tests, make sure that your L2 regularization includes a factor #
        # of 0.5 to simplify the expression for the gradient.                      #
        ############################################################################
        # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****

        N = X.shape[0]
        # 自帶的softmax可以求出loss以及其對scores的偏導dsoftmax
        loss, dsoftmax = softmax_loss(scores, y)
        loss += 0.5 * self.reg * (np.sum(self.params['W2'] * self.params['W2']) + np.sum(self.params['W1'] * self.params['W1']))
        relu_loss = dsoftmax.dot((self.params['W2']).T)
        dx2, grads['W2'], grads['b2'] = affine_backward(dsoftmax, cache_fc2)
        # 因爲在自帶的softmax_loss函數中,第一次求偏導時已經除以了數據總個數N,所以在求W1/W2時候就不用再除以N了
        grads['W2'] = grads['W2'] + self.reg * self.params['W2']
        relu_back = relu_backward(relu_loss, z1)
        dx1, grads['W1'], grads['b1'] = affine_backward(relu_back, cache_fc1)
        grads['W1'] = grads['W1'] + self.reg * self.params['W1']
        pass

        # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
        ############################################################################
        #                             END OF YOUR CODE                             #
        ############################################################################

        return loss, grads


class FullyConnectedNet(object):
    """
    A fully-connected neural network with an arbitrary number of hidden layers,
    ReLU nonlinearities, and a softmax loss function. This will also implement
    dropout and batch/layer normalization as options. For a network with L layers,
    the architecture will be

    {affine - [batch/layer norm] - relu - [dropout]} x (L - 1) - affine - softmax

    where batch/layer normalization and dropout are optional, and the {...} block is
    repeated L - 1 times.

    Similar to the TwoLayerNet above, learnable parameters are stored in the
    self.params dictionary and will be learned using the Solver class.
    """

    def __init__(self, hidden_dims, input_dim=3*32*32, num_classes=10,
                 dropout=1, normalization=None, reg=0.0,
                 weight_scale=1e-2, dtype=np.float32, seed=None):
        """
        Initialize a new FullyConnectedNet.

        Inputs:
        - hidden_dims: A list of integers giving the size of each hidden layer.
        - input_dim: An integer giving the size of the input.
        - num_classes: An integer giving the number of classes to classify.
        - dropout: Scalar between 0 and 1 giving dropout strength. If dropout=1 then
          the network should not use dropout at all.
        - normalization: What type of normalization the network should use. Valid values
          are "batchnorm", "layernorm", or None for no normalization (the default).
        - reg: Scalar giving L2 regularization strength.
        - weight_scale: Scalar giving the standard deviation for random
          initialization of the weights.
        - dtype: A numpy datatype object; all computations will be performed using
          this datatype. float32 is faster but less accurate, so you should use
          float64 for numeric gradient checking.
        - seed: If not None, then pass this random seed to the dropout layers. This
          will make the dropout layers deteriminstic so we can gradient check the
          model.
        """
        self.normalization = normalization
        self.use_dropout = dropout != 1
        self.reg = reg
        self.num_layers = 1 + len(hidden_dims)
        self.dtype = dtype
        self.params = {}

        ############################################################################
        # TODO: Initialize the parameters of the network, storing all values in    #
        # the self.params dictionary. Store weights and biases for the first layer #
        # in W1 and b1; for the second layer use W2 and b2, etc. Weights should be #
        # initialized from a normal distribution centered at 0 with standard       #
        # deviation equal to weight_scale. Biases should be initialized to zero.   #
        #                                                                          #
        # When using batch normalization, store scale and shift parameters for the #
        # first layer in gamma1 and beta1; for the second layer use gamma2 and     #
        # beta2, etc. Scale parameters should be initialized to ones and shift     #
        # parameters should be initialized to zeros.                               #
        ############################################################################
        # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****

        L = len(hidden_dims) # 一共有L個隱含層
        np.random.seed(seed)
        shape_one = input_dim
        for i in range(L):
            self.params['W'+str(i+1)] = np.random.randn(shape_one, hidden_dims[i]) * weight_scale
            self.params['b'+str(i+1)] = np.zeros(hidden_dims[i])
            shape_one = hidden_dims[i] # 把第一個參數的第二維度賦給後一個參數的第一維度,是連續的
            if self.normalization != None:
                self.params['gamma'+str(i+1)] = np.ones(hidden_dims[i])
                self.params['beta'+str(i+1)] = np.zeros(hidden_dims[i])
        self.params['W'+str(L+1)] = np.random.randn(shape_one, num_classes) * weight_scale # 最後一個全連接層,用於輸出
        self.params['b'+str(L+1)] = np.zeros(num_classes)

        # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
        ############################################################################
        #                             END OF YOUR CODE                             #
        ############################################################################

        # When using dropout we need to pass a dropout_param dictionary to each
        # dropout layer so that the layer knows the dropout probability and the mode
        # (train / test). You can pass the same dropout_param to each dropout layer.
        self.dropout_param = {}
        if self.use_dropout:
            self.dropout_param = {'mode': 'train', 'p': dropout}
            if seed is not None:
                self.dropout_param['seed'] = seed

        # With batch normalization we need to keep track of running means and
        # variances, so we need to pass a special bn_param object to each batch
        # normalization layer. You should pass self.bn_params[0] to the forward pass
        # of the first batch normalization layer, self.bn_params[1] to the forward
        # pass of the second batch normalization layer, etc.
        self.bn_params = []
        if self.normalization=='batchnorm':
            self.bn_params = [{'mode': 'train'} for i in range(self.num_layers - 1)] # 列表元素是字典,對應每一個mode
        if self.normalization=='layernorm':
            self.bn_params = [{} for i in range(self.num_layers - 1)]

        # Cast all parameters to the correct datatype
        for k, v in self.params.items():
            self.params[k] = v.astype(dtype)


    def loss(self, X, y=None):
        """
        Compute loss and gradient for the fully-connected net.

        Input / output: Same as TwoLayerNet above.
        """
        X = X.astype(self.dtype) # 轉換數據類型
        mode = 'test' if y is None else 'train'

        # Set train/test mode for batchnorm params and dropout param since they
        # behave differently during training and testing.
        if self.use_dropout:
            self.dropout_param['mode'] = mode
        if self.normalization=='batchnorm':
            for bn_param in self.bn_params:
                bn_param['mode'] = mode
        scores = None
        ############################################################################
        # TODO: Implement the forward pass for the fully-connected net, computing  #
        # the class scores for X and storing them in the scores variable.          #
        #                                                                          #
        # When using dropout, you'll need to pass self.dropout_param to each       #
        # dropout forward pass.                                                    #
        #                                                                          #
        # When using batch normalization, you'll need to pass self.bn_params[0] to #
        # the forward pass for the first batch normalization layer, pass           #
        # self.bn_params[1] to the forward pass for the second batch normalization #
        # layer, etc.                                                              #
        ############################################################################
        # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
        
        if self.normalization == 'batchnorm':
              bn_relu_cache = {}
              input_layer = X
              if self.use_dropout:
                    for i in range(self.num_layers-1):
                        bn_relu_out, bn_relu_cache[i] = affine_bn_relu_dropout_forward(input_layer, self.params['W'+str(i+1)], self.params['b'+str(i+1)], self.params['gamma'+str(i+1)], self.params['beta'+str(i+1)], self.bn_params[i], self.dropout_param)
                        input_layer = bn_relu_out
              else:
                    for i in range(self.num_layers-1):
                        bn_relu_out, bn_relu_cache[i] = affine_bn_relu_forward(input_layer, self.params['W'+str(i+1)], self.params['b'+str(i+1)], self.params['gamma'+str(i+1)], self.params['beta'+str(i+1)], self.bn_params[i])
                        input_layer = bn_relu_out
              # 最後一層是沒有relu的,只有全連接,這裏把cache放在relu_cache字典了只是爲了方便,其實這一層不算relu_cache
              final_layer_out, bn_relu_cache[self.num_layers-1] = affine_forward(bn_relu_out, self.params['W'+str(self.num_layers)], self.params['b'+str(self.num_layers)])
              scores = final_layer_out
        elif self.normalization == 'layernorm':
              ln_relu_cache = {}
              input_layer = X
              if self.use_dropout:
                    for i in range(self.num_layers-1):
                        ln_relu_out, ln_relu_cache[i] = affine_ln_relu_dropout_forward(input_layer, self.params['W'+str(i+1)], self.params['b'+str(i+1)], self.params['gamma'+str(i+1)], self.params['beta'+str(i+1)], self.bn_params[i], self.dropout_param)
                        input_layer = ln_relu_out
              else:
                    for i in range(self.num_layers-1):
                        ln_relu_out, ln_relu_cache[i] = affine_ln_relu_forward(input_layer, self.params['W'+str(i+1)], self.params['b'+str(i+1)], self.params['gamma'+str(i+1)], self.params['beta'+str(i+1)], self.bn_params[i])
                        input_layer = ln_relu_out
              # 最後一層是沒有relu的,只有全連接,這裏把cache放在relu_cache字典了只是爲了方便,其實這一層不算relu_cache
              final_layer_out, ln_relu_cache[self.num_layers-1] = affine_forward(ln_relu_out, self.params['W'+str(self.num_layers)], self.params['b'+str(self.num_layers)])
              scores = final_layer_out
        else:
              relu_cache = {}
              input_layer = X
              if self.use_dropout:
                    for i in range(self.num_layers-1):
                        relu_out, relu_cache[i] = affine_relu_dropout_forward(input_layer, self.params['W'+str(i+1)], self.params['b'+str(i+1)], self.dropout_param)
                        input_layer = relu_out
              else: 
                    for i in range(self.num_layers-1):
                        relu_out, relu_cache[i] = affine_relu_forward(input_layer, self.params['W'+str(i+1)], self.params['b'+str(i+1)])
                        input_layer = relu_out
              # 最後一層是沒有relu的,只有全連接,這裏把cache放在relu_cache字典了只是爲了方便,其實這一層不算relu_cache
              final_layer_out, relu_cache[self.num_layers-1] = affine_forward(relu_out, self.params['W'+str(self.num_layers)], self.params['b'+str(self.num_layers)])
              scores = final_layer_out

        # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
        ############################################################################
        #                             END OF YOUR CODE                             #
        ############################################################################

        # If test mode return early
        if mode == 'test':
            return scores

        loss, grads = 0.0, {}
        ############################################################################
        # TODO: Implement the backward pass for the fully-connected net. Store the #
        # loss in the loss variable and gradients in the grads dictionary. Compute #
        # data loss using softmax, and make sure that grads[k] holds the gradients #
        # for self.params[k]. Don't forget to add L2 regularization!               #
        #                                                                          #
        # When using batch/layer normalization, you don't need to regularize the scale   #
        # and shift parameters.                                                    #
        #                                                                          #
        # NOTE: To ensure that your implementation matches ours and you pass the   #
        # automated tests, make sure that your L2 regularization includes a factor #
        # of 0.5 to simplify the expression for the gradient.                      #
        ############################################################################
        # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****

        loss, dout = softmax_loss(scores, y)
        for i in range(self.num_layers): # 正則化求loss的最終值
              loss += 0.5 * self.reg * np.sum(self.params['W'+str(i+1)] * self.params['W'+str(i+1)])
        
        if self.normalization == 'batchnorm':
              # 最後一層的第一次反向傳播,因爲變量要重新賦值,這一次單獨拿出來
              dx, final_dw, final_db = affine_backward(dout, bn_relu_cache[self.num_layers-1])
              grads['W'+str(self.num_layers)] = final_dw + self.reg * self.params['W'+str(self.num_layers)]
              grads['b'+str(self.num_layers)] = final_db
              
              if self.use_dropout:
                    for i in range(self.num_layers-1, 0, -1): 
                          dx, dw, db, dgamma, dbeta = affine_bn_relu_dropout_backward(dx, bn_relu_cache[i-1])
                          grads['W'+str(i)] = dw + self.reg * self.params['W'+str(i)]
                          grads['b'+str(i)] = db
                          grads['gamma'+str(i)] = dgamma
                          grads['beta'+str(i)] = dbeta
              # 對剩餘的層可以用循環來求解
              else:
                    for i in range(self.num_layers-1, 0, -1):
                          dx, dw, db, dgamma, dbeta = affine_bn_relu_backward(dx, bn_relu_cache[i-1])
                          grads['W'+str(i)] = dw + self.reg * self.params['W'+str(i)]
                          grads['b'+str(i)] = db
                          grads['gamma'+str(i)] = dgamma
                          grads['beta'+str(i)] = dbeta
        elif self.normalization == 'layernorm':
              # 最後一層的第一次反向傳播,因爲變量要重新賦值,這一次單獨拿出來
              dx, final_dw, final_db = affine_backward(dout, ln_relu_cache[self.num_layers-1])
              grads['W'+str(self.num_layers)] = final_dw + self.reg * self.params['W'+str(self.num_layers)]
              grads['b'+str(self.num_layers)] = final_db
              
              if self.use_dropout:
                    for i in range(self.num_layers-1, 0, -1):
                          dx, dw, db, dgamma, dbeta = affine_ln_relu_dropout_backward(dx, ln_relu_cache[i-1])
                          grads['W'+str(i)] = dw + self.reg * self.params['W'+str(i)]
                          grads['b'+str(i)] = db
                          grads['gamma'+str(i)] = dgamma
                          grads['beta'+str(i)] = dbeta
              # 對剩餘的層可以用循環來求解
              else:
                    for i in range(self.num_layers-1, 0, -1):
                          dx, dw, db, dgamma, dbeta = affine_ln_relu_backward(dx, ln_relu_cache[i-1])
                          grads['W'+str(i)] = dw + self.reg * self.params['W'+str(i)]
                          grads['b'+str(i)] = db
                          grads['gamma'+str(i)] = dgamma
                          grads['beta'+str(i)] = dbeta
        else:      
              # 最後一層的第一次反向傳播,因爲變量要重新賦值,這一次單獨拿出來
              dx, final_dw, final_db = affine_backward(dout, relu_cache[self.num_layers-1])
              grads['W'+str(self.num_layers)] = final_dw + self.reg * self.params['W'+str(self.num_layers)]
              grads['b'+str(self.num_layers)] = final_db
              
              if self.use_dropout:
                    for i in range(self.num_layers-1, 0, -1):
                          dx, dw, db = affine_relu_dropout_backward(dx, relu_cache[i-1])
                          grads['W'+str(i)] = dw + self.reg * self.params['W'+str(i)]
                          grads['b'+str(i)] = db
              # 對剩餘的層可以用循環來求解
              else:
                    for i in range(self.num_layers-1, 0, -1):
                          dx, dw, db = affine_relu_backward(dx, relu_cache[i-1])
                          grads['W'+str(i)] = dw + self.reg * self.params['W'+str(i)]
                          grads['b'+str(i)] = db

        # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
        ############################################################################
        #                             END OF YOUR CODE                             #
        ############################################################################

        return loss, grads

4- 結果

在這裏插入圖片描述

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章