帶你領略算法藝術

什麼是算法?
方程不陌生吧?通過解方程來獲得正確的未知值。我們就可以把解方程簡單的理解爲算法。當然算法不僅僅是如此,不着急,我爲你娓娓道來。
先看兩段代碼:

帶你領略算法藝術
這兩段代碼都可以稱之爲算法,因爲分別可以解決兩個數相加和從1加到n的問題。算法並不一定要非常複雜,小到一行代碼,多到上萬行代碼,只要能解決特定問題,就是算法。

如何評估算法優劣

使用不同算法,解決同一個問題,效率可能相差非常大

現有兩個求斐波那契數 (fibonacci number) 的算法

(斐波那契數列:1 1 2 3 5 8 ……)
這裏

public static int fib1(int n) {
    if (n <= 1) return n;
    return fib1(n - 1) + fib1(n - 2);
}
public static int fib2(int n) {
    if (n <= 1) return n;

    int first = 0;
    int second = 1;
    for (int i = 0; i < n - 1; i++) {
        int sum = first + second;
        first = second;
        second = sum;
    }
    return second;
}

這兩個算法哪個更優呢?

如果單從執行效率上進行評估,可能會想到這麼一種方案

比較不同算法對同一組輸入的執行處理時間

這種方案也叫做:事後統計法

我們的做法是:

public static void main(String[] args) {
    int n = 45;//求第45個斐波那契數

    TimeTool.check("fib1", new Task() {
        public void execute() {
            System.out.println(fib1(n));
        }
    });//5.815秒

    TimeTool.check("fib2", new Task() {
        public void execute() {
            System.out.println(fib2(n));
        }
    });//0.0秒
}

上述方案有比較明顯的缺點

執行時間嚴重依賴硬件以及運行時各種不確定的環境因素

必須編寫相應的測算代碼

測試數據的選擇比較難保證公正性 (n=100時可能第一種算法時間更短,n=200時可能第二種算法時間更短)

一般從以下維度來評估算法的優劣

正確性、可讀性、健壯性(對不合理輸入的反應能力和處理能力)

時間複雜度(time complexity):估算程序指令的執行次數(執行時間)

空間複雜度(space complexity):估算所需佔用的存儲空間

我們用這種方案評估一下計算1+2+...+n的算法

帶你領略算法藝術

顯然第二種算法更好。難道是因爲第二種方法代碼更短嗎?斐波那契數列的例子已經告訴我們並不是代碼越短越好。這個例子中第二個算法只需要三步運算就可以解決問題,而第一種需要循環n次。首先都滿足正確性、可讀性、健壯性的條件,然後從時間複雜度來講,假定一步運算的執行時間的一定的,我們考察一下大致需要執行多少次指令,就可以比較出兩種算法的時間長短;再從空間複雜度考慮,需要的變量越少、開闢的存儲空間越小,算法更好。

大O表示法

一般用大O表示法來描述複雜度,它表示的是數據規模 n 對應的複雜度

方法步驟:

(1)估算時間複雜度/空間複雜度(主要是時間複雜度)

(2.1)忽略常數、係數、低階

​ $9$>> O(1)

​ $2n+6$ >> O(n)

​ $n^2+2n+6$ >> O($n^2$)

​ $4n^3+3n^2+22n+100$ >> O($n^3$)

(2.2) 對數階一般省略底數

​ $log_2n=log_29+log_9n$ (任意底數的對數可通過乘以一個常數相互轉化)

​ 所以 $log_2n$、$log_9n$ 統稱爲 $logn$

注意:大O表示法僅僅是一種粗略的分析模型,是一種估算,能幫助我們短時間內瞭解一個算法的執行效率

計算下面幾段代碼的時間複雜度

public static void test1(int n) {
    //1(進行一次判斷操作)
    if (n > 10) { 
        System.out.println("n > 10");
    } else if (n > 5) { // 2
        System.out.println("n > 5");
    } else {
        System.out.println("n <= 5"); 
    }
    // 1(定義一次i) + 4(i累加四次) + 4(判斷i<4四次) + 4(循環體一條語句執行四次)=9
    for (int i = 0; i < 4; i++) {
        System.out.println("test");
    }
    // 大O表示法時間複雜度O(1)
}
public static void test2(int n) {
    // 1(定義一次i)+ 3n(i累加n次+判斷i<n n次+循環體一條語句執行n次)=1+3n
    for (int i = 0; i < n; i++) {
        System.out.println("test");
    }
    // 大O表示法時間複雜度O(n)
}
public static void test3(int n) {
    // 1(定義一次i) + 2n(i累加n次+判斷i<n n次) + n(外層循環體語句執行n次) * (1(定義一次j) + 3n(j累加n次+判斷j<n n次+內層循環體一條語句執行n次))=3n^2 + 3n + 1
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < n; j++) {
            System.out.println("test");
        }
    }
    // 大O表示法時間複雜度O(n^2)
}
public static void test4(int n) {
    // 8 = 2^3
    // 16 = 2^4

    // 3 = log2(8)
    // 4 = log2(16)

    // 執行次數 = log2(n)
    while ((n = n / 2) > 0) {
        System.out.println("test");
    }
    // 大O表示法時間複雜度O(logn)
}
public static void test5(int n) {
    // log5(n)
    while ((n = n / 5) > 0) {
        System.out.println("test");
    }
    // 大O表示法時間複雜度O(logn)
}
public static void test7(int n) {
    // 1(定義一次i) + 2*log2(n)(i*2運算次數) + log2(n)(外層循環執行次數) * (1 + 3n)(內層循環執行次數)
    for (int i = 1; i < n; i = i * 2) {
        // 1 + 3n
        for (int j = 0; j < n; j++) {
            System.out.println("test");
        }
    }
    // 1 + 3*log2(n) + 2 * nlog2(n)
    // 大O表示法時間複雜度O(nlogn)
}

帶你領略算法藝術帶你領略算法藝術

$O(1)<O(logn)<O(n)<O(nlogn)<O(n^2)<O(n^3)<O(2n)<O(n!)<O(n^n)$

可以藉助函數生成工具對比複雜度的大小

https://zh.numberempire.com/graphingcalculator.php

因爲呢,篇幅有限,在此不再過多講解。總而言之,現今大數據時代,算法的使用和研發越來越受人矚目。算法也逐漸進入人們的生活,你可能都還沒注意到,你所使用的天氣預報app,使用的理財軟件等等都是通過算法而實現。所以,加油coder!

如果您想提升自己,學習更多算法、高級編程語言技巧,這裏有免費的相關學習資料,歡迎加微信:19950277730獲取更多技術提升祕籍。這裏不僅有志同道合的小夥伴,更有無數免費編程技巧、學習視頻和資料,加上微信來一起探討學習技術吧!!

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章