Andrew Ng coursera上的《機器學習》ex4

Andrew Ng coursera上的《機器學習》ex4

按照課程所給的ex4的文檔要求,ex4要求完成以下幾個計算過程的代碼編寫:

exerciseNamedescription
sigmoidGradient.mcompute the grident of the sigmoid function
randInitializedWeights.mrandomly initialize weights
nnCostFunction.mNeutral network function

1.sigmoidGradient.m

要求如下: 
sigmoidGradient的表達式 
根據作業文檔給出的要求以及邏輯迴歸的梯度下降的表達式。得出如下的Octave代碼:

function g = sigmoidGradient(z)
%SIGMOIDGRADIENT returns the gradient of the sigmoid function
%evaluated at z
%   g = SIGMOIDGRADIENT(z) computes the gradient of the sigmoid function
%   evaluated at z. This should work regardless if z is a matrix or a
%   vector. In particular, if z is a vector or matrix, you should return
%   the gradient for each element.

g = zeros(size(z));

% ====================== YOUR CODE HERE ======================
% Instructions: Compute the gradient of the sigmoid function evaluated at
%               each value of z (z can be a matrix, vector or scalar).
g = sigmoid(z) .* (1 - sigmoid(z));
% =============================================================
end
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16

需要注意的是文檔中給出的表達式只是針對一個訓練數據集的,需要對所有的訓練數據集進行操作的話,需要用到Octave的一個運算符.,小數點表示對所有數據都進行操作。

2. randInitializedWeights.m

該塊代碼不需要自己寫,所有忽略。

3.nnCostFunction.m

要求如下: 
神經網絡的代價函數
Octave代碼如下:

function [J grad] = nnCostFunction(nn_params, ...
                                   input_layer_size, ...
                                   hidden_layer_size, ...
                                   num_labels, ...
                                   X, y, lambda)
%NNCOSTFUNCTION Implements the neural network cost function for a two layer
%neural network which performs classification
%   [J grad] = NNCOSTFUNCTON(nn_params, hidden_layer_size, num_labels, ...
%   X, y, lambda) computes the cost and gradient of the neural network. The
%   parameters for the neural network are "unrolled" into the vector
%   nn_params and need to be converted back into the weight matrices. 
% 
%   The returned parameter grad should be a "unrolled" vector of the
%   partial derivatives of the neural network.
%

% Reshape nn_params back into the parameters Theta1 and Theta2, the weight matrices
% for our 2 layer neural network
Theta1 = reshape(nn_params(1:hidden_layer_size * (input_layer_size + 1)), ...
                 hidden_layer_size, (input_layer_size + 1));

Theta2 = reshape(nn_params((1 + (hidden_layer_size * (input_layer_size + 1))):end), ...
                 num_labels, (hidden_layer_size + 1));

% Setup some useful variables
m = size(X, 1);

% You need to return the following variables correctly 
J = 0;
Theta1_grad = zeros(size(Theta1));
Theta2_grad = zeros(size(Theta2));

% ====================== YOUR CODE HERE ======================
% Instructions: You should complete the code by working through the
%               following parts.
%
% Part 1: Feedforward the neural network and return the cost in the
%         variable J. After implementing Part 1, you can verify that your
%         cost function computation is correct by verifying the cost
%         computed in ex4.m
%
% Part 2: Implement the backpropagation algorithm to compute the gradients
%         Theta1_grad and Theta2_grad. You should return the partial derivatives of
%         the cost function with respect to Theta1 and Theta2 in Theta1_grad and
%         Theta2_grad, respectively. After implementing Part 2, you can check
%         that your implementation is correct by running checkNNGradients
%
%         Note: The vector y passed into the function is a vector of labels
%               containing values from 1..K. You need to map this vector into a 
%               binary vector of 1's and 0's to be used with the neural network
%               cost function.
%
%         Hint: We recommend implementing backpropagation using a for-loop
%               over the training examples if you are implementing it for the 
%               first time.
%
% Part 3: Implement regularization with the cost function and gradients.
%
%         Hint: You can implement this around the code for
%               backpropagation. That is, you can compute the gradients for
%               the regularization separately and then add them to Theta1_grad
%               and Theta2_grad from Part 2.
%

a1 = [ones(m, 1) X];
z2 = a1 * Theta1';
a2 = sigmoid(z2);
a2 = [ones(m, 1) a2];
z3 = a2 * Theta2';
h = sigmoid(z3);

yk = zeros(m, num_labels);
for i = 1:m
    yk(i, y(i)) = 1;
end
J = (1/m)* sum(sum(((-yk) .* log(h) - (1 - yk) .* log(1 - h))));


r = (lambda / (2 * m)) * (sum(sum(Theta1(:, 2:end) .^ 2))
    + sum(sum(Theta2(:, 2:end) .^ 2)));
J = J + r;

for row = 1:m
    a1 = [1 X(row,:)]';
    z2 = Theta1 * a1;
    a2 = sigmoid(z2);
    a2 = [1; a2];
    z3 = Theta2 * a2;
    a3 = sigmoid(z3);

    z2 = [1; z2];
    delta3 = a3 - yk'(:, row);
    delta2 = (Theta2' * delta3) .* sigmoidGradient(z2);
    delta2 = delta2(2:end);

    Theta1_grad = Theta1_grad + delta2 * a1';
    Theta2_grad = Theta2_grad + delta3 * a2';

end

Theta1_grad = Theta1_grad ./ m;
Theta1_grad(:, 2:end) = Theta1_grad(:, 2:end) ...
        + (lambda/m) * Theta1(:, 2:end);
Theta2_grad = Theta2_grad ./ m;
Theta2_grad(:, 2:end) = Theta2_grad(:, 2:end) + ...
        + (lambda/m) * Theta2(:, 2:end);
% -------------------------------------------------------------

% =========================================================================

% Unroll gradients
grad = [Theta1_grad(:) ; Theta2_grad(:)];
end
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113

以上的代碼分成了三個部分: 
Part 1: Feedforward the neural network and return the cost in the variable J。

Part 2: Implement the backpropagation algorithm to compute the gradients Theta1_grad and Theta2_grad. You should return the partial derivatives of the cost function with respect to Theta1 and Theta2 in Theta1_grad and Theta2_grad, respectively. 
關於反向傳播的思想如下: 
反向傳播思想1 
反向傳播思想算法2

Part 3: Implement regularization with the cost function and gradients.

三個部分分別對應着不同的代碼,上面的代碼從上往下依次爲Part1,part2,part3。

發佈了3 篇原創文章 · 獲贊 31 · 訪問量 6萬+
發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章