Decision Tree

DT

# -*- coding: UTF-8 -*-  
'''
Created on Oct 12, 2010
Decision Tree Source Code for Machine Learning in Action Ch. 3
@author: Peter Harrington
'''
from math import log
import operator

def createDataSet():
    dataSet = [[1, 1, 'yes'],
               [1, 1, 'yes'],
               [1, 0, 'no'],
               [0, 1, 'no'],
               [0, 1, 'no']]
    labels = ['no surfacing','flippers']
    #change to discrete values
    return dataSet, labels
'''
information entropy, 將數學公式翻譯爲代碼
'''
def calcShannonEnt(dataSet):
    numEntries = len(dataSet)
    labelCounts = {}
    for featVec in dataSet: #the the number of unique elements and their occurance
        currentLabel = featVec[-1]
        if currentLabel not in labelCounts.keys(): labelCounts[currentLabel] = 0
        labelCounts[currentLabel] += 1
    shannonEnt = 0.0
    for key in labelCounts:
        prob = float(labelCounts[key])/numEntries
        shannonEnt -= prob * log(prob,2) #log base 2
    return shannonEnt
'''
axis爲屬性的下標值
value爲屬性的取值(若該屬性表現爲兩種形式則取值爲0或1)
將dataSet按照指定屬性(axis)的指定表現形式(value)進行劃分,每劃分一次要消耗一個屬性。
'''
def splitDataSet(dataSet, axis, value):
    retDataSet = []
    for featVec in dataSet:
        if featVec[axis] == value:
            reducedFeatVec = featVec[:axis]     #chop out axis used for splitting
            reducedFeatVec.extend(featVec[axis+1:])
            retDataSet.append(reducedFeatVec)
    return retDataSet
'''
利用information gain來確定那個屬性爲最佳劃分屬性
'''
def chooseBestFeatureToSplit(dataSet):
    numFeatures = len(dataSet[0]) - 1      #the last column is used for the labels
    baseEntropy = calcShannonEnt(dataSet)
    bestInfoGain = 0.0; bestFeature = -1
    for i in range(numFeatures):        #iterate over all the features
        #featList中存放的是同一種屬性
        featList = [example[i] for example in dataSet]#create a list of all the examples of this feature
        #將list中重複的值使用set去除,使值唯一
        uniqueVals = set(featList)       #get a set of unique values
        newEntropy = 0.0
        for value in uniqueVals:
            subDataSet = splitDataSet(dataSet, i, value)
            prob = len(subDataSet)/float(len(dataSet))
            newEntropy += prob * calcShannonEnt(subDataSet)     
        infoGain = baseEntropy - newEntropy     #calculate the info gain; ie reduction in entropy
        if (infoGain > bestInfoGain):       #compare this to the best gain so far
            bestInfoGain = infoGain         #if better than current best, set to best
            bestFeature = i
    return bestFeature                      #returns an integer
'''
當消耗完所有fecture後 存在的子集中有超過一種的屬性時,爲確定該子集屬於那個label,要
通過該函數進行vote確定,與KNN中的投票函數相似
'''
def majorityCnt(classList):
    classCount={}
    for vote in classList:
        if vote not in classCount.keys(): classCount[vote] = 0
        classCount[vote] += 1
    sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)
    return sortedClassCount[0][0]
'''
遞歸創建樹,以字典的形式存儲樹
'''
def createTree(dataSet,labels):
    #get the class from the dataSet
    classList = [example[-1] for example in dataSet]
    #classList中第一個數據類型的數量等於classList的長度
    if classList.count(classList[0]) == len(classList): 
        return classList[0]#stop splitting when all of the classes are equal
    if len(dataSet[0]) == 1: #stop splitting when there are no more features in dataSet
        return majorityCnt(classList)
    bestFeat = chooseBestFeatureToSplit(dataSet)
    #dataset中的數值是將feature數值化(0或1),dataset最後一個值是class值。
    #label中屬性的具體表現(如:有肺、有鰭)
    bestFeatLabel = labels[bestFeat]
    myTree = {bestFeatLabel:{}}
    del(labels[bestFeat])           #產生一個節點消耗一個屬性
    #獲得一個屬性上有幾種表現形式,即一個節點處能分幾個杈
    featValues = [example[bestFeat] for example in dataSet]
    uniqueVals = set(featValues)
    for value in uniqueVals:
        subLabels = labels[:]       #copy all of labels, so trees don't mess up existing labels
        #遞歸創建樹
        myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value),subLabels)
    return myTree                            
'''
test
'''    
def classify(inputTree,featLabels,testVec):
    #獲得根節點
    firstStr = inputTree.keys()[0]
    #獲得根節點key對應的value(即根節點下的所有內容),這個value也是一個字典的形式,其中的key的個數爲根節點屬性表現形式的個數
    secondDict = inputTree[firstStr]
    #得到根節點feature的在featLabels中的下標值
    featIndex = featLabels.index(firstStr)
    #測試數據在根節點屬性上的取值(即測試數據往屬性的哪個分叉走)
    key = testVec[featIndex]
    #測試數據在下一節點
    valueOfFeat = secondDict[key]
    #若下一節點是一個字典,說明下一節點爲非葉子節點,遞歸。若爲葉子節點則得到classLabel
    if isinstance(valueOfFeat, dict): 
        classLabel = classify(valueOfFeat, featLabels, testVec)
    else: classLabel = valueOfFeat
    return classLabel
'''
存儲樹:因爲每次創建樹都會浪費大量的時間,所以存儲樹避免每次都進行創建

python的pickle模塊實現了基本的數據序列和反序列化。通過pickle模塊的序列化操作我們能夠將程
序中運行的對象信息保存到文件中去,永久存儲;
通過pickle模塊的反序列化操作,我們能夠從文件中創建上一次程序保存的對象。
'''
def storeTree(inputTree,filename):
    import pickle       
    fw = open(filename,'w')
    pickle.dump(inputTree,fw)   #序列化
    fw.close()
'''
從存儲的文件總提取樹
'''
def grabTree(filename):
    import pickle
    fr = open(filename)
    return pickle.load(fr)      #反序列化
    



treePlotter

# -*- coding: UTF-8 -*-  
'''
Created on Oct 14, 2010

@author: Peter Harrington
'''
import matplotlib.pyplot as plt

decisionNode = dict(boxstyle="sawtooth", fc="0.8")
leafNode = dict(boxstyle="round4", fc="0.8")
arrow_args = dict(arrowstyle="<-")

def getNumLeafs(myTree):
    numLeafs = 0
    firstStr = myTree.keys()[0]
    secondDict = myTree[firstStr]
    for key in secondDict.keys():
        if type(secondDict[key]).__name__=='dict':#test to see if the nodes are dictonaires, if not they are leaf nodes
            numLeafs += getNumLeafs(secondDict[key])
        else:   numLeafs +=1
    return numLeafs

def getTreeDepth(myTree):
    maxDepth = 0
    firstStr = myTree.keys()[0]
    secondDict = myTree[firstStr]
    for key in secondDict.keys():
        if type(secondDict[key]).__name__=='dict':#test to see if the nodes are dictonaires, if not they are leaf nodes
            thisDepth = 1 + getTreeDepth(secondDict[key])
        else:   thisDepth = 1
        if thisDepth > maxDepth: maxDepth = thisDepth
    return maxDepth

def plotNode(nodeTxt, centerPt, parentPt, nodeType):
    createPlot.ax1.annotate(nodeTxt, xy=parentPt,  xycoords='axes fraction',
             xytext=centerPt, textcoords='axes fraction',
             va="center", ha="center", bbox=nodeType, arrowprops=arrow_args )
    
def plotMidText(cntrPt, parentPt, txtString):
    xMid = (parentPt[0]-cntrPt[0])/2.0 + cntrPt[0]
    yMid = (parentPt[1]-cntrPt[1])/2.0 + cntrPt[1]
    createPlot.ax1.text(xMid, yMid, txtString, va="center", ha="center", rotation=30)

def plotTree(myTree, parentPt, nodeTxt):#if the first key tells you what feat was split on
    numLeafs = getNumLeafs(myTree)  #this determines the x width of this tree
    depth = getTreeDepth(myTree)
    firstStr = myTree.keys()[0]     #the text label for this node should be this
    cntrPt = (plotTree.xOff + (1.0 + float(numLeafs))/2.0/plotTree.totalW, plotTree.yOff)
    plotMidText(cntrPt, parentPt, nodeTxt)
    plotNode(firstStr, cntrPt, parentPt, decisionNode)
    secondDict = myTree[firstStr]
    plotTree.yOff = plotTree.yOff - 1.0/plotTree.totalD
    for key in secondDict.keys():
        if type(secondDict[key]).__name__=='dict':#test to see if the nodes are dictonaires, if not they are leaf nodes   
            plotTree(secondDict[key],cntrPt,str(key))        #recursion
        else:   #it's a leaf node print the leaf node
            plotTree.xOff = plotTree.xOff + 1.0/plotTree.totalW
            plotNode(secondDict[key], (plotTree.xOff, plotTree.yOff), cntrPt, leafNode)
            plotMidText((plotTree.xOff, plotTree.yOff), cntrPt, str(key))
    plotTree.yOff = plotTree.yOff + 1.0/plotTree.totalD
#if you do get a dictonary you know it's a tree, and the first element will be another dict

def createPlot(inTree):
    fig = plt.figure(1, facecolor='white')
    fig.clf()
    axprops = dict(xticks=[], yticks=[])
    createPlot.ax1 = plt.subplot(111, frameon=False, **axprops)    #no ticks
    #createPlot.ax1 = plt.subplot(111, frameon=False) #ticks for demo puropses 
    plotTree.totalW = float(getNumLeafs(inTree))
    plotTree.totalD = float(getTreeDepth(inTree))
    plotTree.xOff = -0.5/plotTree.totalW; plotTree.yOff = 1.0;
    plotTree(inTree, (0.5,1.0), '')
    plt.show()

#def createPlot():
#    fig = plt.figure(1, facecolor='white')
#    fig.clf()
#    createPlot.ax1 = plt.subplot(111, frameon=False) #ticks for demo puropses 
#    plotNode('a decision node', (0.5, 0.1), (0.1, 0.5), decisionNode)
#    plotNode('a leaf node', (0.8, 0.1), (0.3, 0.8), leafNode)
#    plt.show()

def retrieveTree(i):
    listOfTrees =[{'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}},
                  {'no surfacing': {0: 'no', 1: {'flippers': {0: {'head': {0: 'no', 1: 'yes'}}, 1: 'no'}}}}
                  ]
    return listOfTrees[i]

#createPlot(thisTree)



main

from treePlotter import *
from DT import *
from ss.DT import storeTree

#dataSet, labels = createDataSet()
#print calcShannonEnt(dataSet)
#myTree = createTree(dataSet, labels)
#print myTree
#storeTree(myTree, 'ss')
myTree = grabTree('ss')
#print myTree
createPlot(myTree)
'''
fr = open('lenses.txt')
lens = [inst.strip().split('\t') for inst in fr.readlines()]
lensLabel = ['age','prescript','astigmatic','tearRate']
myTree = createTree(lens, lensLabel)
createPlot(myTree)
'''


發佈了66 篇原創文章 · 獲贊 2 · 訪問量 5萬+
發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章