Handler基本使用(三) Handler機制的原理和源碼講解

         官方文檔這樣介紹 Handler 

         Each Handler instance is associated with a single thread and that thread's message queue. When you create a new Handler, it is bound to the thread / message queue of the thread that is creating it -- from that point on, it will deliver messages and runnables to that message queue and execute them as they come out of the message queue.

        意思是每個handler實例都關聯一個線程以及這個線程的message queue,一旦handler創建,它就和線程綁定了。handler的作用是傳遞信息和runnable至message queue ,並且在信息和runnable從消息隊列返回時處理他們。
        根據上面的描述,我繪製了一個比較簡單的handler工作原理圖

        假設我們現在有兩個線程,線程B想要通過handler發消息給線程A,具體是怎麼一個過程呢。
        很簡單,線程A擁有自己的
        Handler   :1、負責發送消息和runnable到消息隊列  2、處理從消息隊列返回的消息和runnable
        消息隊列:負責存放待處理的消息。
        Looper   :負責循環遍歷消息隊列,根據先進先出原則取出待處理消息發送給handler


        當線程B想要發送消息到線程A處理時,它只需要獲取線程A中的handler實例,調用handler的幾個基礎方法發送消息即可,這些消息會被線程A的handler實例傳遞到線程A的消息隊列等待處理,當線程A的looper循環遍歷到他們時,就會被傳遞到線程A的handler實例進行處理,整個過程就完成了。
         

          那麼我們可以看一看源碼,是不是這樣一個過程呢
          從handler的構造函數入手 
 

public Handler() {//無參構造函數調用了帶兩個參數的構造函數
        this(null, false);
    }
public Handler(Callback callback, boolean async) {
        if (FIND_POTENTIAL_LEAKS) {
            final Class<? extends Handler> klass = getClass();
            if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&
                    (klass.getModifiers() & Modifier.STATIC) == 0) {
                Log.w(TAG, "The following Handler class should be static or leaks might occur: " +
                    klass.getCanonicalName());
            }
        }

        mLooper = Looper.myLooper();
        if (mLooper == null) {
            throw new RuntimeException(
                "Can't create handler inside thread that has not called Looper.prepare()");
        }
        mQueue = mLooper.mQueue;
        mCallback = callback;
        mAsynchronous = async;
    }
         上面這個方法非常重要!它做了啥事情呢

       1、檢查了創建handler的類是不是內部類,如果是內部類是不是靜態的,不然則做出提示

   The following Handler class should be static or leaks might occur 

   這個提示是不是非常眼熟,嘻嘻。

   爲什麼要做這個檢查呢,我之前發表過一篇文章進行討論,有興趣可以參考 點擊打開鏈接

          2、 mLooper = Looper.myLooper();  獲取了一個looper對象,如果該對象爲空,則拋出異常

          Can't create handler inside thread that has not called Looper.prepare()

         嘻嘻,也是很眼熟吧,當我們在子線程創建handler時,這個異常一言不合就拋出了。那麼我們可以看看這個Looper.prepare()到底幹了啥吧

  public static void prepare() {
        prepare(true);
    }

    private static void prepare(boolean quitAllowed) {
        if (sThreadLocal.get() != null) {
            throw new RuntimeException("Only one Looper may be created per thread");
        }
        sThreadLocal.set(new Looper(quitAllowed));
    }
        它做的事情很簡單,檢查當前線程有沒有looper對象,有則拋出異常提示線程已經擁有自己的looper對象。沒有就爲當前線程創建一個looper對象

        回到handler的構造函數,在獲取了自己的looper對象以後,它又做了什麼

        3、mQueue = mLooper.mQueue; 獲取message queue對象

        到這裏我們可以看到,Handler的構造函數做了兩件重要的事情,一是創建looper對象,二是獲取消息隊列


       接下來,我們看一看Handler是怎麼傳遞消息的,依然從源碼入手 

 public final boolean sendMessage(Message msg)
    {
        return sendMessageDelayed(msg, 0);
    }
  public final boolean sendMessageDelayed(Message msg, long delayMillis)
    {
        if (delayMillis < 0) {
            delayMillis = 0;
        }
        return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
    }
 public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
        MessageQueue queue = mQueue;
        if (queue == null) {
            RuntimeException e = new RuntimeException(
                    this + " sendMessageAtTime() called with no mQueue");
            Log.w("Looper", e.getMessage(), e);
            return false;
        }
        return enqueueMessage(queue, msg, uptimeMillis);
    }
 private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
        msg.target = this;
        if (mAsynchronous) {
            msg.setAsynchronous(true);
        }
        return queue.enqueueMessage(msg, uptimeMillis);
    }
           再多的這裏就不貼了,因爲無論從handler哪一個發送消息的方法入手,最終調用的都是queue.enqueueMessage(msg, uptimeMillis)。我們主要看一看這個enqueueMessage(msg, uptimeMillis)方法是幹了啥
 boolean enqueueMessage(Message msg, long when) {
        if (msg.isInUse()) {
            throw new AndroidRuntimeException(msg + " This message is already in use.");
        }
        if (msg.target == null) {
            throw new AndroidRuntimeException("Message must have a target.");
        }

        synchronized (this) {
            if (mQuitting) {
                RuntimeException e = new RuntimeException(
                        msg.target + " sending message to a Handler on a dead thread");
                Log.w("MessageQueue", e.getMessage(), e);
                return false;
            }

            msg.when = when;
            Message p = mMessages;
            boolean needWake;
            if (p == null || when == 0 || when < p.when) {
                // New head, wake up the event queue if blocked.
                msg.next = p;
                mMessages = msg;
                needWake = mBlocked;
            } else {
                // Inserted within the middle of the queue.  Usually we don't have to wake
                // up the event queue unless there is a barrier at the head of the queue
                // and the message is the earliest asynchronous message in the queue.
                needWake = mBlocked && p.target == null && msg.isAsynchronous();
                Message prev;
                for (;;) {
                    prev = p;
                    p = p.next;
                    if (p == null || when < p.when) {
                        break;
                    }
                    if (needWake && p.isAsynchronous()) {
                        needWake = false;
                    }
                }
                msg.next = p; // invariant: p == prev.next
                prev.next = msg;
            }

            // We can assume mPtr != 0 because mQuitting is false.
            if (needWake) {
                nativeWake(mPtr);
            }
        }
        return true;
    }

         別看這個方法裏又是判斷又是循環的,實際上它的任務很簡單,就是把剛剛發送過來的message插入到消息隊列中合適的位置,爲了便於理解,還是稍微講幾句它的核心代碼  

            msg.when = when;
            Message p = mMessages;
            boolean needWake;
            if (p == null || when == 0 || when < p.when) {
                // New head, wake up the event queue if blocked.
                msg.next = p;
                mMessages = msg;
                needWake = mBlocked;
            } 

            先解釋一下這裏的mMessage,它是處於消息隊列頭部的消息,if判斷語句說的是,如果這個消息隊列頭爲空,或者是新消息的延遲爲0,或者是新消息的延遲小於隊列頭消息的延遲時,直接把新消息置於隊列頭部。不然的話

        else {
                // Inserted within the middle of the queue.  Usually we don't have to wake
                // up the event queue unless there is a barrier at the head of the queue
                // and the message is the earliest asynchronous message in the queue.
                needWake = mBlocked && p.target == null && msg.isAsynchronous();
                Message prev;
                for (;;) {
                    prev = p;
                    p = p.next;
                    if (p == null || when < p.when) {
                        break;
                    }
                    if (needWake && p.isAsynchronous()) {
                        needWake = false;
                    }
                }
                msg.next = p; // invariant: p == prev.next
                prev.next = msg;
            }
          需要根據新消息的延遲將它插入至隊列中合適的位置,這裏的for循環做的就是遍歷消息隊列,依次對比新消息和每一條消息的延遲,直至找到比新消息延遲大的第一條消息。

        到這裏,handler的構造函數和消息傳遞,我們都看到了,結合上圖會不會更清晰一點呢。接下來,我們就看looper是如何循環遍歷消息隊列的吧

 /**
     * Run the message queue in this thread. Be sure to call
     * {@link #quit()} to end the loop.
     */
    public static void loop() {
        final Looper me = myLooper();
        if (me == null) {
            throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
        }
        final MessageQueue queue = me.mQueue;

        // Make sure the identity of this thread is that of the local process,
        // and keep track of what that identity token actually is.
        Binder.clearCallingIdentity();
        final long ident = Binder.clearCallingIdentity();

        for (;;) {
            Message msg = queue.next(); // might block
            if (msg == null) {
                // No message indicates that the message queue is quitting.
                return;
            }

            // This must be in a local variable, in case a UI event sets the logger
            Printer logging = me.mLogging;
            if (logging != null) {
                logging.println(">>>>> Dispatching to " + msg.target + " " +
                        msg.callback + ": " + msg.what);
            }

            msg.target.dispatchMessage(msg);

            if (logging != null) {
                logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
            }

            // Make sure that during the course of dispatching the
            // identity of the thread wasn't corrupted.
            final long newIdent = Binder.clearCallingIdentity();
            if (ident != newIdent) {
                Log.wtf(TAG, "Thread identity changed from 0x"
                        + Long.toHexString(ident) + " to 0x"
                        + Long.toHexString(newIdent) + " while dispatching to "
                        + msg.target.getClass().getName() + " "
                        + msg.callback + " what=" + msg.what);
            }

            msg.recycle();
        }
    }
        我們依舊只看最關鍵的代碼

 public static void loop() {
        final Looper me = myLooper();
        ……
        final MessageQueue queue = me.mQueue;
        ……
        for (;;) {
            Message msg = queue.next(); // might block
            if (msg == null) {
                // No message indicates that the message queue is quitting.
                return;
            }
            ……
            msg.target.dispatchMessage(msg);
            ……
            msg.recycle();
        }
    }
         這個方法先拿到消息隊列,然後開啓一個for循環,從消息隊列中依次取出每一條消息,然後調用msg.target.dispatchMessage(msg)進行處理

         這個msg.target是啥呢,這裏必須說一下,其實這個target就是handler對象

         如果我們發送消息時採用的是handler的一系列方法( 

                                                                                       sendMessage(Message msg)

                                                                                       sendEmptyMessage(int what)

                                                                                       sendEmptyMessageDelayed(int what, long delayMillis)

                                                                                       ……

                                                                                      )
       他們最終都會調用到一個方法
  

 private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
        msg.target = this;
        if (mAsynchronous) {
            msg.setAsynchronous(true);
        }
        return queue.enqueueMessage(msg, uptimeMillis);
    }
        在這裏handler將自己賦值給message對象的target


        如果我們發送消息時採用的是Message的一系列方法

                                                                                       obtain(Handler h)  +sendToTarget()

                                                                                       obtain(Handler h, Runnable callback) +sendToTarget()


         
每一個obtain方法中,都會將handler賦值給message對象的target,這裏就不貼出代碼了。

   所以msg.target.dispatchMessage(msg),其實就是message對象調用它所綁定的handler的方法,處理本身了。我們最後看看這個dispatchMessage(msg)方法

 /**
     * Handle system messages here.
     */
    public void dispatchMessage(Message msg) {
        if (msg.callback != null) {
            handleCallback(msg);
        } else {
            if (mCallback != null) {
                if (mCallback.handleMessage(msg)) {
                    return;
                }
            }
            handleMessage(msg);
        }
    }
   這個方法做的事情很簡單,判斷回調有沒有被實現,如果回調被實現則調用相應的方法,不然就調用handleMessage方法。

   到這裏handler的工作原理和源碼講解就全部結束了,小女子火候尚淺,若有不對的地方,還請各位俠士指教了。O(∩_∩)O~~










發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章