Linux TCP 連接數修改

Linux  TCP 連接數修改
 
一、           文件數限制修改
(1)   vi /etc/security/limits.conf
*  soft nofile 10240
   *  hard nofile 10240
 
(2) vi /etc/pam.d/login
session required /lib/security/pam_limits.so
 
二、           網絡端口限制修改
(1) vi /etc/rc.d/rc.local
/sbin/modprobe ip_conntrack  # 加載 ip_contrack 模塊
# /sbin/sysctl –p              # 使 /etc/sysctl.conf 的配置生效,根據實際情況來決定是否添加此命令
 
[root@AS4U8 ~]# sysctl -a | grep "net.ipv4.ip"
net.ipv4.ip_conntrack_max = 16384
這表明將系統對最大跟蹤的TCP連接數限制默認爲16384。請注意,此限制值要儘量小,以節省對內核內存的佔用
 
modprobe ip_conntrack

echo "modprobe ip_conntrack" >> /etc/rc.local


(2) vi /etc/sysctl.conf

net.ipv4.ip_local_port_range = 1024 65000
net.ipv4.ip_conntrack_max = 10240
此限制值要儘量小,以節省對內核內存的佔用。
 
 
詳細解說:
1、修改用戶進程可打開文件數限制
   在Linux平臺上,無論編寫客戶端程序還是服務端程序,在進行高併發TCP連接處理時,最高的併發數量都要受到系統對用戶單一進程同時可打開文件數量的限制(這是因爲系統爲每個TCP連接都要創建一個socket句柄,每個socket句柄同時也是一個文件句柄)。可使用ulimit命令查看系統允許當前用戶進程打開的文件數限制:
   [speng@as4 ~]$ ulimit -n
   1024
   這表示當前用戶的每個進程最多允許同時打開1024個文件,這1024個文件中還得除去每個進程必然打開的標準輸入,標準輸出,標準錯誤,服務器監聽socket,進程間通訊的unix域socket等文件,那麼剩下的可用於客戶端socket連接的文件數就只有大概1024-10=1014個左右。也就是說缺省情況下,基於Linux的通訊程序最多允許同時1014個TCP併發連接。
 
   對於想支持更高數量的TCP併發連接的通訊處理程序,就必須修改Linux對當前用戶的進程同時打開的文件數量的軟限制(soft limit)和硬限制(hardlimit)。其中軟限制是指Linux在當前系統能夠承受的範圍內進一步限制用戶同時打開的文件數;硬限制則是根據系統硬件資源狀況(主要是系統內存)計算出來的系統最多可同時打開的文件數量。通常軟限制小於或等於硬限制。
 
   修改上述限制的最簡單的辦法就是使用ulimit命令:
   [speng@as4 ~]$ ulimit -n <file_num>
   上述命令中,在<file_num>中指定要設置的單一進程允許打開的最大文件數。如果系統回顯類似於“Operation notpermitted”之類的話,說明上述限制修改失敗,實際上是因爲在<file_num>中指定的數值超過了Linux系統對該用戶打開文件數的軟限制或硬限制。因此,就需要修改Linux系統對用戶的關於打開文件數的軟限制和硬限制。
 
   第一步,修改/etc/security/limits.conf文件,在文件中添加如下行:
   speng soft nofile 10240
   speng hard nofile 10240
   其中speng指定了要修改哪個用戶的打開文件數限制,可用'*'號表示修改所有用戶的限制;soft或hard指定要修改軟限制還是硬限制;10240則指定了想要修改的新的限制值,即最大打開文件數(請注意軟限制值要小於或等於硬限制)。修改完後保存文件。
 
   第二步,修改/etc/pam.d/login文件,在文件中添加如下行:
   session required /lib/security/pam_limits.so
   這是告訴Linux在用戶完成系統登錄後,應該調用pam_limits.so模塊來設置系統對該用戶可使用的各種資源數量的最大限制(包括用戶可打開的最大文件數限制),而pam_limits.so模塊就會從/etc/security/limits.conf文件中讀取配置來設置這些限制值。修改完後保存此文件。
 
   第三步,查看Linux系統級的最大打開文件數限制,使用如下命令:
   [speng@as4 ~]$ cat /proc/sys/fs/file-max
   12158
   這表明這臺Linux系統最多允許同時打開(即包含所有用戶打開文件數總和)12158個文件,是Linux系統級硬限制,所有用戶級的打開文件數限制都不應超過這個數值。通常這個系統級硬限制是Linux系統在啓動時根據系統硬件資源狀況計算出來的最佳的最大同時打開文件數限制,如果沒有特殊需要,不應該修改此限制,除非想爲用戶級打開文件數限制設置超過此限制的值。修改此硬限制的方法是修改/etc/rc.local腳本,在腳本中添加如下行:
   echo 22158 > /proc/sys/fs/file-max
   這是讓Linux在啓動完成後強行將系統級打開文件數硬限制設置爲22158。修改完後保存此文件。
 
   完成上述步驟後重啓系統,一般情況下就可以將Linux系統對指定用戶的單一進程允許同時打開的最大文件數限制設爲指定的數值。如果重啓後用ulimit-n命令查看用戶可打開文件數限制仍然低於上述步驟中設置的最大值,這可能是因爲在用戶登錄腳本/etc/profile中使用ulimit-n命令已經將用戶可同時打開的文件數做了限制。由於通過ulimit-n修改系統對用戶可同時打開文件的最大數限制時,新修改的值只能小於或等於上次ulimit-n設置的值,因此想用此命令增大這個限制值是不可能的。所以,如果有上述問題存在,就只能去打開/etc/profile腳本文件,在文件中查找是否使用了ulimit-n限制了用戶可同時打開的最大文件數量,如果找到,則刪除這行命令,或者將其設置的值改爲合適的值,然後保存文件,用戶退出並重新登錄系統即可。
   通過上述步驟,就爲支持高併發TCP連接處理的通訊處理程序解除關於打開文件數量方面的系統限制。
 
2、修改網絡內核對TCP連接的有關限制
 
   在Linux上編寫支持高併發TCP連接的客戶端通訊處理程序時,有時會發現儘管已經解除了系統對用戶同時打開文件數的限制,但仍會出現併發TCP連接數增加到一定數量時,再也無法成功建立新的TCP連接的現象。出現這種現在的原因有多種。
 
   第一種原因可能是因爲Linux網絡內核對本地端口號範圍有限制。此時,進一步分析爲什麼無法建立TCP連接,會發現問題出在connect()調用返回失敗,查看系統錯誤提示消息是“Can't assign requestedaddress”。同時,如果在此時用tcpdump工具監視網絡,會發現根本沒有TCP連接時客戶端發SYN包的網絡流量。這些情況說明問題在於本地Linux系統內核中有限制。其實,問題的根本原因在於Linux內核的TCP/IP協議實現模塊對系統中所有的客戶端TCP連接對應的本地端口號的範圍進行了限制(例如,內核限制本地端口號的範圍爲1024~32768之間)。當系統中某一時刻同時存在太多的TCP客戶端連接時,由於每個TCP客戶端連接都要佔用一個唯一的本地端口號(此端口號在系統的本地端口號範圍限制中),如果現有的TCP客戶端連接已將所有的本地端口號佔滿,則此時就無法爲新的TCP客戶端連接分配一個本地端口號了,因此係統會在這種情況下在connect()調用中返回失敗,並將錯誤提示消息設爲“Can't assignrequested address”。有關這些控制邏輯可以查看Linux內核源代碼,以linux2.6內核爲例,可以查看tcp_ipv4.c文件中如下函數:
   static int tcp_v4_hash_connect(struct sock *sk)
   請注意上述函數中對變量sysctl_local_port_range的訪問控制。變量sysctl_local_port_range的初始化則是在tcp.c文件中的如下函數中設置:
   void __init tcp_init(void)
   內核編譯時默認設置的本地端口號範圍可能太小,因此需要修改此本地端口範圍限制。
   第一步,修改/etc/sysctl.conf文件,在文件中添加如下行:
   net.ipv4.ip_local_port_range = 1024 65000
   這表明將系統對本地端口範圍限制設置爲1024~65000之間。請注意,本地端口範圍的最小值必須大於或等於1024;而端口範圍的最大值則應小於或等於65535。修改完後保存此文件。
   第二步,執行sysctl命令:
   [speng@as4 ~]$ sysctl -p
   如果系統沒有錯誤提示,就表明新的本地端口範圍設置成功。如果按上述端口範圍進行設置,則理論上單獨一個進程最多可以同時建立60000多個TCP客戶端連接。
 
   第二種無法建立TCP連接的原因可能是因爲Linux網絡內核的IP_TABLE防火牆對最大跟蹤的TCP連接數有限制。此時程序會表現爲在connect()調用中阻塞,如同死機,如果用tcpdump工具監視網絡,也會發現根本沒有TCP連接時客戶端發SYN包的網絡流量。由於IP_TABLE防火牆在內核中會對每個TCP連接的狀態進行跟蹤,跟蹤信息將會放在位於內核內存中的conntrackdatabase中,這個數據庫的大小有限,當系統中存在過多的TCP連接時,數據庫容量不足,IP_TABLE無法爲新的TCP連接建立跟蹤信息,於是表現爲在connect()調用中阻塞。此時就必須修改內核對最大跟蹤的TCP連接數的限制,方法同修改內核對本地端口號範圍的限制是類似的:
   第一步,修改/etc/sysctl.conf文件,在文件中添加如下行:
   net.ipv4.ip_conntrack_max = 10240
   這表明將系統對最大跟蹤的TCP連接數限制設置爲10240。請注意,此限制值要儘量小,以節省對內核內存的佔用。
   第二步,執行sysctl命令:
   [speng@as4 ~]$ sysctl -p
   如果系統沒有錯誤提示,就表明系統對新的最大跟蹤的TCP連接數限制修改成功。如果按上述參數進行設置,則理論上單獨一個進程最多可以同時建立10000多個TCP客戶端連接。
 
3、使用支持高併發網絡I/O的編程技術
 
   在Linux上編寫高併發TCP連接應用程序時,必須使用合適的網絡I/O技術和I/O事件分派機制。
 
   可用的I/O技術有同步I/O,非阻塞式同步I/O(也稱反應式I/O),以及異步I/O。在高TCP併發的情形下,如果使用同步I/O,這會嚴重阻塞程序的運轉,除非爲每個TCP連接的I/O創建一個線程。但是,過多的線程又會因系統對線程的調度造成巨大開銷。因此,在高TCP併發的情形下使用同步I/O是不可取的,這時可以考慮使用非阻塞式同步I/O或異步I/O。非阻塞式同步I/O的技術包括使用select(),poll(),epoll等機制。異步I/O的技術就是使用AIO。
 
   從I/O事件分派機制來看,使用select()是不合適的,因爲它所支持的併發連接數有限(通常在1024個以內)。如果考慮性能,poll()也是不合適的,儘管它可以支持的較高的TCP併發數,但是由於其採用“輪詢”機制,當併發數較高時,其運行效率相當低,並可能存在I/O事件分派不均,導致部分TCP連接上的I/O出現“飢餓”現象。而如果使用epoll或AIO,則沒有上述問題(早期Linux內核的AIO技術實現是通過在內核中爲每個I/O請求創建一個線程來實現的,這種實現機制在高併發TCP連接的情形下使用其實也有嚴重的性能問題。但在最新的Linux內核中,AIO的實現已經得到改進)。
 
   綜上所述,在開發支持高併發TCP連接的Linux應用程序時,應儘量使用epoll或AIO技術來實現併發的TCP連接上的I/O控制,這將爲提升程序對高併發TCP連接的支持提供有效的I/O保證。

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章