iOS卡頓監測方案總結

整理了一下iOS中卡頓監測的那些方案,不瞭解卡頓的原理的可以看這篇文章 iOS 保持界面流暢的技巧,寫的很好。

FPS

FPS (Frames Per Second) 是圖像領域中的定義,表示每秒渲染幀數,通常用於衡量畫面的流暢度,每秒幀數越多,則表示畫面越流暢,60fps 最佳,一般我們的APP的FPS 只要保持在 50-60之間,用戶體驗都是比較流暢的。

監測FPS也有好幾種,這裏只說最常用的方案,最早是在YYFPSLabel中看到的。實現原理是向主線程的RunLoop的添加一個commonModes的CADisplayLink,每次屏幕刷新的時候都要執行CADisplayLink的方法,所以可以統計1s內屏幕刷新的次數,也就是FPS了,下面貼上我用Swift實現的代碼:

class WeakProxy: NSObject {
    
    weak var target: NSObjectProtocol?
    
    init(target: NSObjectProtocol) {
        self.target = target
        super.init()
    }
    
    override func responds(to aSelector: Selector!) -> Bool {
        return (target?.responds(to: aSelector) ?? false) || super.responds(to: aSelector)
    }

    override func forwardingTarget(for aSelector: Selector!) -> Any? {
        return target
    }
}

class FPSLabel: UILabel {
    var link:CADisplayLink!
    //記錄方法執行次數
    var count: Int = 0
    //記錄上次方法執行的時間,通過link.timestamp - _lastTime計算時間間隔
    var lastTime: TimeInterval = 0
    var _font: UIFont!
    var _subFont: UIFont!
    
    fileprivate let defaultSize = CGSize(width: 55,height: 20)
    
    override init(frame: CGRect) {
        super.init(frame: frame)
        if frame.size.width == 0 && frame.size.height == 0 {
            self.frame.size = defaultSize
        }
        self.layer.cornerRadius = 5
        self.clipsToBounds = true
        self.textAlignment = NSTextAlignment.center
        self.isUserInteractionEnabled = false
        self.backgroundColor = UIColor.white.withAlphaComponent(0.7)
        
        _font = UIFont(name: "Menlo", size: 14)
        if _font != nil {
            _subFont = UIFont(name: "Menlo", size: 4)
        }else{
            _font = UIFont(name: "Courier", size: 14)
            _subFont = UIFont(name: "Courier", size: 4)
        }
        
        link = CADisplayLink(target: WeakProxy.init(target: self), selector: #selector(FPSLabel.tick(link:)))
        link.add(to: RunLoop.main, forMode: .commonModes)
    }
    
    //CADisplayLink 刷新執行的方法
    @objc func tick(link: CADisplayLink) {
        
        guard lastTime != 0 else {
            lastTime = link.timestamp
            return
        }
        
        count += 1
        let timePassed = link.timestamp - lastTime
        
        //時間大於等於1秒計算一次,也就是FPSLabel刷新的間隔,不希望太頻繁刷新
        guard timePassed >= 1 else {
            return
        }
        lastTime = link.timestamp
        let fps = Double(count) / timePassed
        count = 0
        
        let progress = fps / 60.0
        let color = UIColor(hue: CGFloat(0.27 * (progress - 0.2)), saturation: 1, brightness: 0.9, alpha: 1)
        
        let text = NSMutableAttributedString(string: "\(Int(round(fps))) FPS")
        text.addAttribute(NSAttributedStringKey.foregroundColor, value: color, range: NSRange(location: 0, length: text.length - 3))
        text.addAttribute(NSAttributedStringKey.foregroundColor, value: UIColor.white, range: NSRange(location: text.length - 3, length: 3))
        text.addAttribute(NSAttributedStringKey.font, value: _font, range: NSRange(location: 0, length: text.length))
        text.addAttribute(NSAttributedStringKey.font, value: _subFont, range: NSRange(location: text.length - 4, length: 1))
        self.attributedText = text
    }
    
    // 把displaylin從Runloop modes中移除
    deinit {
        link.invalidate()
    }
    
    required init?(coder aDecoder: NSCoder) {
        fatalError("init(coder:) has not been implemented")
    }
    
}

RunLoop

其實FPS中CADisplayLink的使用也是基於RunLoop,都依賴main RunLoop。我們先來看看簡版的RunLoop的代碼

// 1.進入loop
__CFRunLoopRun(runloop, currentMode, seconds, returnAfterSourceHandled)

// 2.RunLoop 即將觸發 Timer 回調。
__CFRunLoopDoObservers(runloop, currentMode, kCFRunLoopBeforeTimers);
// 3.RunLoop 即將觸發 Source0 (非port) 回調。
__CFRunLoopDoObservers(runloop, currentMode, kCFRunLoopBeforeSources);
// 4.RunLoop 觸發 Source0 (非port) 回調。
sourceHandledThisLoop = __CFRunLoopDoSources0(runloop, currentMode, stopAfterHandle)
// 5.執行被加入的block
__CFRunLoopDoBlocks(runloop, currentMode);

// 6.RunLoop 的線程即將進入休眠(sleep)。
__CFRunLoopDoObservers(runloop, currentMode, kCFRunLoopBeforeWaiting);

// 7.調用 mach_msg 等待接受 mach_port 的消息。線程將進入休眠, 直到被下面某一個事件喚醒。
__CFRunLoopServiceMachPort(waitSet, &msg, sizeof(msg_buffer), &livePort)

// 進入休眠

// 8.RunLoop 的線程剛剛被喚醒了。
__CFRunLoopDoObservers(runloop, currentMode, kCFRunLoopAfterWaiting

// 9.如果一個 Timer 到時間了,觸發這個Timer的回調
__CFRunLoopDoTimers(runloop, currentMode, mach_absolute_time())

// 10.如果有dispatch到main_queue的block,執行bloc
 __CFRUNLOOP_IS_SERVICING_THE_MAIN_DISPATCH_QUEUE__(msg);
 
 // 11.如果一個 Source1 (基於port) 發出事件了,處理這個事件
__CFRunLoopDoSource1(runloop, currentMode, source1, msg);

// 12.RunLoop 即將退出
__CFRunLoopDoObservers(rl, currentMode, kCFRunLoopExit);

我們可以看到RunLoop調用方法主要集中在kCFRunLoopBeforeSources和kCFRunLoopAfterWaiting之間,有人可能會問kCFRunLoopAfterWaiting之後也有一些方法調用,爲什麼不監測呢,我的理解,大部分導致卡頓的的方法是在kCFRunLoopBeforeSources和kCFRunLoopAfterWaiting之間,比如source0主要是處理App內部事件,App自己負責管理(出發),如UIEvent(Touch事件等,GS發起到RunLoop運行再到事件回調到UI)、CFSocketRef。開闢一個子線程,然後實時計算 kCFRunLoopBeforeSources 和 kCFRunLoopAfterWaiting 兩個狀態區域之間的耗時是否超過某個閥值,來斷定主線程的卡頓情況。

這裏做法又有點不同,iOS實時卡頓監控是設置連續5次超時50ms認爲卡頓,戴銘在 GCDFetchFeed 中設置的是連續3次超時80ms認爲卡頓的代碼。以下是iOS實時卡頓監控中提供的代碼:

- (void)start
{
    if (observer)
        return;
    
    // 信號
    semaphore = dispatch_semaphore_create(0);
    
    // 註冊RunLoop狀態觀察
    CFRunLoopObserverContext context = {0,(__bridge void*)self,NULL,NULL};
    observer = CFRunLoopObserverCreate(kCFAllocatorDefault,
                                       kCFRunLoopAllActivities,
                                       YES,
                                       0,
                                       &runLoopObserverCallBack,
                                       &context);
    CFRunLoopAddObserver(CFRunLoopGetMain(), observer, kCFRunLoopCommonModes);
    
    // 在子線程監控時長
    dispatch_async(dispatch_get_global_queue(0, 0), ^{
        while (YES)
        {
            long st = dispatch_semaphore_wait(semaphore, dispatch_time(DISPATCH_TIME_NOW, 50*NSEC_PER_MSEC));
            if (st != 0)
            {
                if (!observer)
                {
                    timeoutCount = 0;
                    semaphore = 0;
                    activity = 0;
                    return;
                }
                
                if (activity==kCFRunLoopBeforeSources || activity==kCFRunLoopAfterWaiting)
                {
                    if (++timeoutCount < 5)
                        continue;
                    
                    PLCrashReporterConfig *config = [[PLCrashReporterConfig alloc] initWithSignalHandlerType:PLCrashReporterSignalHandlerTypeBSD
                                                                                       symbolicationStrategy:PLCrashReporterSymbolicationStrategyAll];
                    PLCrashReporter *crashReporter = [[PLCrashReporter alloc] initWithConfiguration:config];
                    
                    NSData *data = [crashReporter generateLiveReport];
                    PLCrashReport *reporter = [[PLCrashReport alloc] initWithData:data error:NULL];
                    NSString *report = [PLCrashReportTextFormatter stringValueForCrashReport:reporter
                                                                              withTextFormat:PLCrashReportTextFormatiOS];
                    
                    NSLog(@"------------\n%@\n------------", report);
                }
            }
            timeoutCount = 0;
        }
    });
}

子線程Ping

但是由於主線程的RunLoop在閒置時基本處於Before Waiting狀態,這就導致了即便沒有發生任何卡頓,這種檢測方式也總能認定主線程處在卡頓狀態。這套卡頓監控方案大致思路爲:創建一個子線程通過信號量去ping主線程,因爲ping的時候主線程肯定是在kCFRunLoopBeforeSources和kCFRunLoopAfterWaiting之間。每次檢測時設置標記位爲YES,然後派發任務到主線程中將標記位設置爲NO。接着子線程沉睡超時闕值時長,判斷標誌位是否成功設置成NO,如果沒有說明主線程發生了卡頓ANREye 中就是使用子線程Ping的方式監測卡頓的。

public class CatonMonitor {
    
    enum Constants {
        static let timeOutInterval: TimeInterval = 0.05
        static let queueTitle = "com.roy.PerformanceMonitor.CatonMonitor"
    }
    
    private var queue: DispatchQueue = DispatchQueue(label: Constants.queueTitle)
    private var isMonitoring = false
    private var semaphore: DispatchSemaphore = DispatchSemaphore(value: 0)
    
    public init() {}
    
    public func start() {
        guard !isMonitoring else { return }
        
        isMonitoring = true
        queue.async {
            while self.isMonitoring {
                
                var timeout = true
                
                DispatchQueue.main.async {
                    timeout = false
                    self.semaphore.signal()
                }
                
                Thread.sleep(forTimeInterval: Constants.timeOutInterval)
                
                if timeout {
                    let symbols = RCBacktrace.callstack(.main)
                    for symbol in symbols {
                        print(symbol.description)
                    }
                }
                self.semaphore.wait()
            }
        }
    }
    
    public func stop() {
        guard isMonitoring else { return }
        
        isMonitoring = false
    }
}

CPU超過了80%

這個是 Matrix-iOS 卡頓監控 提到的:

我們也認爲 CPU 過高也可能導致應用出現卡頓,所以在子線程檢查主線程狀態的同時,如果檢測到 CPU 佔用過高,會捕獲當前的線程快照保存到文件中。目前微信應用中認爲,單核 CPU 的佔用超過了 80%,此時的 CPU 佔用就過高了。

這種方式一般不能單獨拿來作爲卡頓監測,但可以像微信Matrix一樣配合其他方式一起工作。

戴銘在GCDFetchFeed中如果CPU 的佔用超過了 80%也捕獲函數調用棧,以下是代碼:

#define CPUMONITORRATE 80

+ (void)updateCPU {
    thread_act_array_t threads;
    mach_msg_type_number_t threadCount = 0;
    const task_t thisTask = mach_task_self();
    kern_return_t kr = task_threads(thisTask, &threads, &threadCount);
    if (kr != KERN_SUCCESS) {
        return;
    }
    for (int i = 0; i < threadCount; i++) {
        thread_info_data_t threadInfo;
        thread_basic_info_t threadBaseInfo;
        mach_msg_type_number_t threadInfoCount = THREAD_INFO_MAX;
        if (thread_info((thread_act_t)threads[i], THREAD_BASIC_INFO, (thread_info_t)threadInfo, &threadInfoCount) == KERN_SUCCESS) {
            threadBaseInfo = (thread_basic_info_t)threadInfo;
            if (!(threadBaseInfo->flags & TH_FLAGS_IDLE)) {
                integer_t cpuUsage = threadBaseInfo->cpu_usage / 10;
                if (cpuUsage > CPUMONITORRATE) {
                    //cup 消耗大於設置值時打印和記錄堆棧
                    NSString *reStr = smStackOfThread(threads[i]);
                    SMCallStackModel *model = [[SMCallStackModel alloc] init];
                    model.stackStr = reStr;
                    //記錄數據庫中
                    [[[SMLagDB shareInstance] increaseWithStackModel:model] subscribeNext:^(id x) {}];
//                    NSLog(@"CPU useage overload thread stack:\n%@",reStr);
                }
            }
        }
    }
}

卡頓方法的棧信息

當我們得到卡頓的時間點,就要立即拿到卡頓的堆棧,有兩種方式一種是遍歷棧幀,實現原理參考 iOS獲取任意線程調用棧 寫的挺詳細的,同時開源了代碼RCBacktrace,另一種方式是通過Signal獲取任意線程調用棧,實現原理通過Signal handling(信號處理)獲取任意線程調用棧寫了,代碼在backtrace-swift,但這種方式在調試時比較麻煩,建議用第一種方式。

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章