oops堆棧分析實例

本文基於Linux-4.0,根據一個crash現場的實例,根據堆棧中的數據,反推整個函數調用流程,由於本例子存在oops,也會直接打印出backtrace,最終可以與我們的分析結果做一下比較,看看分析是否正確。

/ # echo c > /proc/sysrq-trigger
sysrq: SysRq : Trigger a crash
Unable to handle kernel NULL pointer dereference at virtual address 00000000
pgd = ffff8000779f9000
[00000000] *pgd=00000000b79fb003, *pud=00000000b7cb3003, *pmd=0000000000000000
Internal error: Oops: 94000046 [#1] PREEMPT SMP
Modules linked in:
CPU: 1 PID: 642 Comm: sh Not tainted 4.0.0 #1
Hardware name: linux,dummy-virt (DT)
task: ffff800077f46300 ti: ffff800077804000 task.ti: ffff800077804000
PC is at sysrq_handle_crash+0x14/0x1c
LR is at __handle_sysrq+0x124/0x194
pc : [<ffff800000377cd4>] lr : [<ffff800000378688>] pstate: 60000145
sp : ffff800077807dd0
x29: ffff800077807dd0 x28: ffff800077804000
x27: ffff80000056d000 x26: 0000000000000040
x25: 000000000000011a x24: 0000000000000015
x23: 0000000000000000 x22: 0000000000000007
x21: 0000000000000063 x20: ffff8000007ae000
x19: ffff8000007c18e8 x18: 00000000005fd000
x17: 0000000000602000 x16: ffff80000019705c
x15: 0000000000001000 x14: 0ffffffffffffffe
x13: 0000000000000038 x12: 0101010101010101
x11: ffff8000007ae000 x10: 000000000000007c
x9 : 0000000000000002 x8 : 0000000000000001
x7 : 000000000000007c x6 : 0000000000000030
x5 : 0000000000002208 x4 : 0000000000000000
x3 : 0000000000000000 x2 : ffff800077804000
x1 : 0000000000000000 x0 : 0000000000000001

Process sh (pid: 642, stack limit = 0xffff800077804028)
Stack: (0xffff800077807dd0 to 0xffff800077808000)
7dc0:                                     77807e10 ffff8000 00378b04 ffff8000
7de0: 00000002 00000000 fffffffb ffffffff 77807ec8 ffff8000 1c84b550 00000000
7e00: 60000000 00000000 1c84b550 00000000 77807e30 ffff8000 001f2f5c ffff8000
7e20: 785b8c00 ffff8000 1c84b550 00000000 77807e50 ffff8000 00196650 ffff8000
7e40: 78607d00 ffff8000 00000002 00000000 77807e90 ffff8000 001970a0 ffff8000
7e60: 78607d00 ffff8000 78607d00 ffff8000 1c84b550 00000000 00000002 00000000
7e80: 60000000 00000000 00000000 00000000 da4cd8c0 0000ffff 00085c30 ffff8000
7ea0: 00000000 00000000 1c84b550 00000000 ffffffff ffffffff 00409398 00000000
7ec0: 00200200 00000000 00000000 00000000 00000001 00000000 1c84b550 00000000
7ee0: 00000002 00000000 00000000 00000000 1c84b550 00000000 1c84b560 00000000
7f00: 80808080 00808080 fefeff62 fefefefe 00000040 00000000 fefefeff fefefefe
7f20: 7f7f7f7f 7f7f7f7f 01010101 01010101 00000008 00000000 00000400 00000000
7f40: 00502b5c 00000050 00001000 00000000 00000000 00000000 00602000 00000000
7f60: 005fd000 00000000 00000001 00000000 1c84b550 00000000 00000002 00000000
7f80: 00601000 00000000 1c84b550 00000000 00000020 00000000 00000000 00000000
7fa0: 00601000 00000000 005820f0 00000000 da4cdfba 0000ffff da4cd8c0 0000ffff
7fc0: 0044a504 00000000 da4cd180 0000ffff 00409398 00000000 60000000 00000000
7fe0: 00000001 00000000 00000040 00000000 00000000 00000000 00000000 00000000
Call trace:
[<ffff800000377cd4>] sysrq_handle_crash+0x14/0x1c
[<ffff800000378b00>] write_sysrq_trigger+0x50/0x64
[<ffff8000001f2f58>] proc_reg_write+0x54/0x84
[<ffff80000019664c>] vfs_write+0x98/0x1d8
[<ffff80000019709c>] SyS_write+0x40/0xa0
Code: 52800020 b903a420 d5033e9f d2800001 (39000020)
---[ end trace 2fd7253656805fb6 ]---

SP和FP(x29)寄存器中的值都是ffff800077807dd0,從後面信息可以進行堆棧回溯:

ffff8000 77807dd0 --- FP
ffff8000 77807e10 --- FP'(從FP寄存器地址處讀取)
ffff8000 77807e30 --- FP''(從FP'寄存器地址處讀取)
ffff8000 77807e50 --- FP'''(從FP''寄存器地址處讀取)
ffff8000 77807e90 --- FP''''(從FP'''寄存器地址處讀取)
0000ffff da4cd8c0 --- 該值已經不是內核地址了,所以已經超出了內核堆棧區域

我們找到了FP地址後,可以進一步找到LR寄存器中保存的返回地址:

ffff8000 00378b04 --- FP' + 8
ffff8000 001f2f5c --- FP'' + 8
ffff8000 00196650 --- FP''' + 8
ffff8000 001970a0 --- FP'''' + 8

接下來看是一個一個查看對應的堆棧調用關係,從第一個LR地址開始查看,進入gdb調試vmlinux:

aarch64-linux-gnu-gdb vmlinux

跳轉關係1
使用反彙編指令:

(gdb) disassemble 0xffff800000378b04
Dump of assembler code for function write_sysrq_trigger:
   0xffff800000378ab0 <+0>:	stp	x29, x30, [sp,#-32]!
   0xffff800000378ab4 <+4>:	mov	x29, sp
   0xffff800000378ab8 <+8>:	str	x19, [sp,#16]
   0xffff800000378abc <+12>:	mov	x19, x2
   0xffff800000378ac0 <+16>:	cbz	x2, 0xffff800000378b04 <write_sysrq_trigger+84>
   0xffff800000378ac4 <+20>:	mov	x0, sp
   0xffff800000378ac8 <+24>:	mov	x2, x1
   0xffff800000378acc <+28>:	and	x3, x0, #0xffffffffffffc000
   0xffff800000378ad0 <+32>:	mov	x0, #0xfffffffffffffff2    	// #-14
   0xffff800000378ad4 <+36>:	ldr	x3, [x3,#8]
   0xffff800000378ad8 <+40>:	adds	x2, x2, #0x1
   0xffff800000378adc <+44>:	ccmp	x2, x3, #0x2, cc
   0xffff800000378ae0 <+48>:	cset	x4, ls
   0xffff800000378ae4 <+52>:	cbz	x4, 0xffff800000378b08 <write_sysrq_trigger+88>
   0xffff800000378ae8 <+56>:	mov	w2, #0x0                   	// #0
   0xffff800000378aec <+60>:	ldrb	w3, [x1]
   0xffff800000378af0 <+64>:	uxtb	w3, w3
   0xffff800000378af4 <+68>:	cbnz	w2, 0xffff800000378b08 <write_sysrq_trigger+88>
   0xffff800000378af8 <+72>:	mov	w1, #0x0                   	// #0
   0xffff800000378afc <+76>:	mov	w0, w3
   0xffff800000378b00 <+80>:	bl	0xffff800000378564 <__handle_sysrq>
   0xffff800000378b04 <+84>:	mov	x0, x19
   0xffff800000378b08 <+88>:	ldr	x19, [sp,#16]
   0xffff800000378b0c <+92>:	ldp	x29, x30, [sp],#32
   0xffff800000378b10 <+96>:	ret

關鍵的在如下的位置:

   0xffff800000378b00 <+80>:	bl	0xffff800000378564 <__handle_sysrq>
   0xffff800000378b04 <+84>:	mov	x0, x19

我們對應的LR地址爲0xffff800000378b04,該值-4就應該是跳轉指令:所以上一級函數是write_sysrq_trigger,跳轉進入的函數symbol爲__handle_sysrq。

跳轉關係2

使用反彙編指令:

(gdb) disassemble 0xffff8000001f2f5c
Dump of assembler code for function proc_reg_write:
   0xffff8000001f2f04 <+0>:	stp	x29, x30, [sp,#-32]!
   0xffff8000001f2f08 <+4>:	mov	w4, #0x0                   	// #0
   0xffff8000001f2f0c <+8>:	mov	x29, sp
   0xffff8000001f2f10 <+12>:	stp	x19, x20, [sp,#16]
   0xffff8000001f2f14 <+16>:	ldr	x5, [x0,#32]
   0xffff8000001f2f18 <+20>:	ldur	x19, [x5,#-32]
   0xffff8000001f2f1c <+24>:	add	x5, x19, #0x64
   0xffff8000001f2f20 <+28>:	add	w6, w4, #0x1
   0xffff8000001f2f24 <+32>:	dmb	ish
   0xffff8000001f2f28 <+36>:	ldxr	w7, [x5]
   0xffff8000001f2f2c <+40>:	cmp	w7, w4
   0xffff8000001f2f30 <+44>:	b.ne	0xffff8000001f2f3c <proc_reg_write+56>
   0xffff8000001f2f34 <+48>:	stxr	w8, w6, [x5]
   0xffff8000001f2f38 <+52>:	cbnz	w8, 0xffff8000001f2f28 <proc_reg_write+36>
   0xffff8000001f2f3c <+56>:	dmb	ish
   0xffff8000001f2f40 <+60>:	cmp	w4, w7
   0xffff8000001f2f44 <+64>:	b.ne	0xffff8000001f2f78 <proc_reg_write+116>
   0xffff8000001f2f48 <+68>:	ldr	x4, [x19,#40]
   0xffff8000001f2f4c <+72>:	mov	x20, #0xfffffffffffffffb    	// #-5
   0xffff8000001f2f50 <+76>:	ldr	x4, [x4,#24]
   0xffff8000001f2f54 <+80>:	cbz	x4, 0xffff8000001f2f60 <proc_reg_write+92>
   0xffff8000001f2f58 <+84>:	blr	x4
   0xffff8000001f2f5c <+88>:	mov	x20, x0
   0xffff8000001f2f60 <+92>:	mov	x0, x19
   0xffff8000001f2f64 <+96>:	bl	0xffff8000001f2bf4 <unuse_pde>
   0xffff8000001f2f68 <+100>:	mov	x0, x20
   0xffff8000001f2f6c <+104>:	ldp	x19, x20, [sp,#16]
   0xffff8000001f2f70 <+108>:	ldp	x29, x30, [sp],#32
   0xffff8000001f2f74 <+112>:	ret
   0xffff8000001f2f78 <+116>:	mov	w4, w7
   0xffff8000001f2f7c <+120>:	tbz	w7, #31, 0xffff8000001f2f20 <proc_reg_write+28>
   0xffff8000001f2f80 <+124>:	mov	x20, #0xfffffffffffffffb    	// #-5
   0xffff8000001f2f84 <+128>:	b	0xffff8000001f2f68 <proc_reg_write+100>
End of assembler dump.

關鍵的在如下的位置:

   0xffff8000001f2f58 <+84>:	blr	x4
   0xffff8000001f2f5c <+88>:	mov	x20, x0

我們對應的LR地址爲0xffff8000001f2f5c,該值-4就應該是跳轉指令:blr x4 實際上是指跳轉到x4寄存器中的一個地址處。返回地址位於proc_reg_write函數中,因此該函數應該就是上一級調用的函數,至於這個x4寄存器地址對應的symbol,實際上就是write_sysrq_trigger,因爲是從它返回過來的。

跳轉關係3

使用反彙編指令:

(gdb) disassemble 0xffff800000196650
Dump of assembler code for function vfs_write:
   0xffff8000001965b4 <+0>:	stp	x29, x30, [sp,#-64]!
   0xffff8000001965b8 <+4>:	mov	x29, sp
   0xffff8000001965bc <+8>:	stp	x19, x20, [sp,#16]
   0xffff8000001965c0 <+12>:	stp	x21, x22, [sp,#32]
   0xffff8000001965c4 <+16>:	str	x23, [sp,#48]
   0xffff8000001965c8 <+20>:	ldr	w4, [x0,#68]
   0xffff8000001965cc <+24>:	tbz	w4, #1, 0xffff80000019676c <vfs_write+440>
   0xffff8000001965d0 <+28>:	tbz	w4, #18, 0xffff800000196774 <vfs_write+448>
   0xffff8000001965d4 <+32>:	mov	x4, sp
   0xffff8000001965d8 <+36>:	and	x5, x4, #0xffffffffffffc000
   0xffff8000001965dc <+40>:	mov	x4, x1
   0xffff8000001965e0 <+44>:	ldr	x5, [x5,#8]
   0xffff8000001965e4 <+48>:	adds	x4, x4, x2
   0xffff8000001965e8 <+52>:	ccmp	x4, x5, #0x2, cc
   0xffff8000001965ec <+56>:	cset	x6, ls
   0xffff8000001965f0 <+60>:	cbz	x6, 0xffff800000196750 <vfs_write+412>
   0xffff8000001965f4 <+64>:	mov	x21, x3
   0xffff8000001965f8 <+68>:	mov	x22, x1
   0xffff8000001965fc <+72>:	mov	x3, x2
   0xffff800000196600 <+76>:	mov	x1, x0
   0xffff800000196604 <+80>:	mov	x19, x0
   0xffff800000196608 <+84>:	mov	x2, x21
   0xffff80000019660c <+88>:	mov	w0, #0x1                   	// #1
   0xffff800000196610 <+92>:	bl	0xffff8000001964c4 <rw_verify_area>
   0xffff800000196614 <+96>:	sxtw	x20, w0
   0xffff800000196618 <+100>:	tbnz	x20, #63, 0xffff8000001966c0 <vfs_write+268>
   0xffff80000019661c <+104>:	ldr	x1, [x19,#32]
   0xffff800000196620 <+108>:	ldrh	w0, [x1]
   0xffff800000196624 <+112>:	and	w0, w0, #0xf000
   0xffff800000196628 <+116>:	cmp	w0, #0x8, lsl #12
   0xffff80000019662c <+120>:	b.eq	0xffff800000196758 <vfs_write+420>
   0xffff800000196630 <+124>:	ldr	x0, [x19,#40]
   0xffff800000196634 <+128>:	ldr	x4, [x0,#24]
   0xffff800000196638 <+132>:	cbz	x4, 0xffff8000001966d8 <vfs_write+292>
   0xffff80000019663c <+136>:	mov	x2, x20
   0xffff800000196640 <+140>:	mov	x3, x21
   0xffff800000196644 <+144>:	mov	x1, x22
   0xffff800000196648 <+148>:	mov	x0, x19
   0xffff80000019664c <+152>:	blr	x4
   0xffff800000196650 <+156>:	mov	x20, x0

關鍵的在如下的位置:

   0xffff80000019664c <+152>:	blr	x4
   0xffff800000196650 <+156>:	mov	x20, x0

我們對應的LR地址爲0xffff800000196650,該值-4就應該是跳轉指令:blr x4 ,至於這個x4寄存器地址對應的symbol,實際上就是proc_reg_write,該函數運行結束後會返回到vfs_write中,因此上一級的函數是vfs_write。

跳轉關係4

使用反彙編指令:

(gdb) disassemble 0xffff8000001970a0
Dump of assembler code for function SyS_write:
   0xffff80000019705c <+0>:	stp	x29, x30, [sp,#-64]!
   0xffff800000197060 <+4>:	mov	x29, sp
   0xffff800000197064 <+8>:	stp	x19, x20, [sp,#16]
   0xffff800000197068 <+12>:	stp	x21, x22, [sp,#32]
   0xffff80000019706c <+16>:	mov	x21, x1
   0xffff800000197070 <+20>:	mov	x22, x2
   0xffff800000197074 <+24>:	bl	0xffff8000001b2f14 <__fdget_pos>
   0xffff800000197078 <+28>:	ands	x20, x0, #0xfffffffffffffffc
   0xffff80000019707c <+32>:	mov	x19, x0
   0xffff800000197080 <+36>:	b.eq	0xffff8000001970f4 <SyS_write+152>
   0xffff800000197084 <+40>:	add	x3, x29, #0x40
   0xffff800000197088 <+44>:	ldr	x4, [x20,#112]
   0xffff80000019708c <+48>:	mov	x1, x21
   0xffff800000197090 <+52>:	mov	x2, x22
   0xffff800000197094 <+56>:	mov	x0, x20
   0xffff800000197098 <+60>:	str	x4, [x3,#-8]!
   0xffff80000019709c <+64>:	bl	0xffff8000001965b4 <vfs_write>
   0xffff8000001970a0 <+68>:	mov	x21, x0
   0xffff8000001970a4 <+72>:	tbnz	x21, #63, 0xffff8000001970b0 <SyS_write+84>
   0xffff8000001970a8 <+76>:	ldr	x0, [x29,#56]
   0xffff8000001970ac <+80>:	str	x0, [x20,#112]
   0xffff8000001970b0 <+84>:	tbnz	w19, #1, 0xffff8000001970cc <SyS_write+112>
   0xffff8000001970b4 <+88>:	tbnz	w19, #0, 0xffff8000001970d8 <SyS_write+124>
   0xffff8000001970b8 <+92>:	mov	x0, x21
   0xffff8000001970bc <+96>:	ldp	x19, x20, [sp,#16]
   0xffff8000001970c0 <+100>:	ldp	x21, x22, [sp,#32]
   0xffff8000001970c4 <+104>:	ldp	x29, x30, [sp],#64
   0xffff8000001970c8 <+108>:	ret
   0xffff8000001970cc <+112>:	add	x0, x20, #0x48
   0xffff8000001970d0 <+116>:	bl	0xffff8000005611bc <mutex_unlock>
   0xffff8000001970d4 <+120>:	tbz	w19, #0, 0xffff8000001970b8 <SyS_write+92>
   0xffff8000001970d8 <+124>:	mov	x0, x20
   0xffff8000001970dc <+128>:	bl	0xffff800000198128 <fput>
   0xffff8000001970e0 <+132>:	mov	x0, x21
   0xffff8000001970e4 <+136>:	ldp	x19, x20, [sp,#16]
   0xffff8000001970e8 <+140>:	ldp	x21, x22, [sp,#32]
   0xffff8000001970ec <+144>:	ldp	x29, x30, [sp],#64
   0xffff8000001970f0 <+148>:	ret
   0xffff8000001970f4 <+152>:	mov	x21, #0xfffffffffffffff7    	// #-9
   0xffff8000001970f8 <+156>:	b	0xffff8000001970b8 <SyS_write+92>
End of assembler dump.

關鍵的在如下的位置:

   0xffff80000019709c <+64>:	bl	0xffff8000001965b4 <vfs_write>
   0xffff8000001970a0 <+68>:	mov	x21, x0

我們對應的LR地址爲0xffff8000001970a0,該值-4就應該是跳轉指令:bl 0xffff8000001965b4 <vfs_write> ,這裏看起來就很清晰了,從SyS_write函數跳轉到vfs_write函數,完成之後又返回到了SyS_write函數,因此上一級的函數是SyS_write。

總結

從上面的分析過程,我們可以梳理出函數的調用關係如下:

SyS_write --> vfs_write --> proc_reg_write --> write_sysrq_trigger --> __handle_sysrq --> sysrq_handle_crash

看看這個結果是不是與dumpstack中的一致,說明整個分析過程是正確的。哈哈~

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章