Golang(二十八)[map-底層數據結構]

1.源碼位置

src\runtime\map.go

2.map源碼

// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package runtime

// This file contains the implementation of Go's map type.
//
// A map is just a hash table. The data is arranged
// into an array of buckets. Each bucket contains up to
// 8 key/elem pairs. The low-order bits of the hash are
// used to select a bucket. Each bucket contains a few
// high-order bits of each hash to distinguish the entries
// within a single bucket.
//
// If more than 8 keys hash to a bucket, we chain on
// extra buckets.
//
// When the hashtable grows, we allocate a new array
// of buckets twice as big. Buckets are incrementally
// copied from the old bucket array to the new bucket array.
//
// Map iterators walk through the array of buckets and
// return the keys in walk order (bucket #, then overflow
// chain order, then bucket index).  To maintain iteration
// semantics, we never move keys within their bucket (if
// we did, keys might be returned 0 or 2 times).  When
// growing the table, iterators remain iterating through the
// old table and must check the new table if the bucket
// they are iterating through has been moved ("evacuated")
// to the new table.

// Picking loadFactor: too large and we have lots of overflow
// buckets, too small and we waste a lot of space. I wrote
// a simple program to check some stats for different loads:
// (64-bit, 8 byte keys and elems)
//  loadFactor    %overflow  bytes/entry     hitprobe    missprobe
//        4.00         2.13        20.77         3.00         4.00
//        4.50         4.05        17.30         3.25         4.50
//        5.00         6.85        14.77         3.50         5.00
//        5.50        10.55        12.94         3.75         5.50
//        6.00        15.27        11.67         4.00         6.00
//        6.50        20.90        10.79         4.25         6.50
//        7.00        27.14        10.15         4.50         7.00
//        7.50        34.03         9.73         4.75         7.50
//        8.00        41.10         9.40         5.00         8.00
//
// %overflow   = percentage of buckets which have an overflow bucket
// bytes/entry = overhead bytes used per key/elem pair
// hitprobe    = # of entries to check when looking up a present key
// missprobe   = # of entries to check when looking up an absent key
//
// Keep in mind this data is for maximally loaded tables, i.e. just
// before the table grows. Typical tables will be somewhat less loaded.

import (
	"runtime/internal/atomic"
	"runtime/internal/math"
	"runtime/internal/sys"
	"unsafe"
)

const (
	// Maximum number of key/elem pairs a bucket can hold.
	bucketCntBits = 3
	bucketCnt     = 1 << bucketCntBits

	// Maximum average load of a bucket that triggers growth is 6.5.
	// Represent as loadFactorNum/loadFactDen, to allow integer math.
	loadFactorNum = 13
	loadFactorDen = 2

	// Maximum key or elem size to keep inline (instead of mallocing per element).
	// Must fit in a uint8.
	// Fast versions cannot handle big elems - the cutoff size for
	// fast versions in cmd/compile/internal/gc/walk.go must be at most this elem.
	maxKeySize  = 128
	maxElemSize = 128

	// data offset should be the size of the bmap struct, but needs to be
	// aligned correctly. For amd64p32 this means 64-bit alignment
	// even though pointers are 32 bit.
	dataOffset = unsafe.Offsetof(struct {
		b bmap
		v int64
	}{}.v)

	// Possible tophash values. We reserve a few possibilities for special marks.
	// Each bucket (including its overflow buckets, if any) will have either all or none of its
	// entries in the evacuated* states (except during the evacuate() method, which only happens
	// during map writes and thus no one else can observe the map during that time).
	emptyRest      = 0 // this cell is empty, and there are no more non-empty cells at higher indexes or overflows.
	emptyOne       = 1 // this cell is empty
	evacuatedX     = 2 // key/elem is valid.  Entry has been evacuated to first half of larger table.
	evacuatedY     = 3 // same as above, but evacuated to second half of larger table.
	evacuatedEmpty = 4 // cell is empty, bucket is evacuated.
	minTopHash     = 5 // minimum tophash for a normal filled cell.

	// flags
	iterator     = 1 // there may be an iterator using buckets
	oldIterator  = 2 // there may be an iterator using oldbuckets
	hashWriting  = 4 // a goroutine is writing to the map
	sameSizeGrow = 8 // the current map growth is to a new map of the same size

	// sentinel bucket ID for iterator checks
	noCheck = 1<<(8*sys.PtrSize) - 1
)

// isEmpty reports whether the given tophash array entry represents an empty bucket entry.
func isEmpty(x uint8) bool {
	return x <= emptyOne
}

// A header for a Go map.
type hmap struct {
	// Note: the format of the hmap is also encoded in cmd/compile/internal/gc/reflect.go.
	// Make sure this stays in sync with the compiler's definition.
	count     int // # live cells == size of map.  Must be first (used by len() builtin)
	flags     uint8
	B         uint8  // log_2 of # of buckets (can hold up to loadFactor * 2^B items)
	noverflow uint16 // approximate number of overflow buckets; see incrnoverflow for details
	hash0     uint32 // hash seed

	buckets    unsafe.Pointer // array of 2^B Buckets. may be nil if count==0.
	oldbuckets unsafe.Pointer // previous bucket array of half the size, non-nil only when growing
	nevacuate  uintptr        // progress counter for evacuation (buckets less than this have been evacuated)

	extra *mapextra // optional fields
}

// mapextra holds fields that are not present on all maps.
type mapextra struct {
	// If both key and elem do not contain pointers and are inline, then we mark bucket
	// type as containing no pointers. This avoids scanning such maps.
	// However, bmap.overflow is a pointer. In order to keep overflow buckets
	// alive, we store pointers to all overflow buckets in hmap.extra.overflow and hmap.extra.oldoverflow.
	// overflow and oldoverflow are only used if key and elem do not contain pointers.
	// overflow contains overflow buckets for hmap.buckets.
	// oldoverflow contains overflow buckets for hmap.oldbuckets.
	// The indirection allows to store a pointer to the slice in hiter.
	overflow    *[]*bmap
	oldoverflow *[]*bmap

	// nextOverflow holds a pointer to a free overflow bucket.
	nextOverflow *bmap
}

// A bucket for a Go map.
type bmap struct {
	// tophash generally contains the top byte of the hash value
	// for each key in this bucket. If tophash[0] < minTopHash,
	// tophash[0] is a bucket evacuation state instead.
	tophash [bucketCnt]uint8
	// Followed by bucketCnt keys and then bucketCnt elems.
	// NOTE: packing all the keys together and then all the elems together makes the
	// code a bit more complicated than alternating key/elem/key/elem/... but it allows
	// us to eliminate padding which would be needed for, e.g., map[int64]int8.
	// Followed by an overflow pointer.
}

// A hash iteration structure.
// If you modify hiter, also change cmd/compile/internal/gc/reflect.go to indicate
// the layout of this structure.
type hiter struct {
	key         unsafe.Pointer // Must be in first position.  Write nil to indicate iteration end (see cmd/internal/gc/range.go).
	elem        unsafe.Pointer // Must be in second position (see cmd/internal/gc/range.go).
	t           *maptype
	h           *hmap
	buckets     unsafe.Pointer // bucket ptr at hash_iter initialization time
	bptr        *bmap          // current bucket
	overflow    *[]*bmap       // keeps overflow buckets of hmap.buckets alive
	oldoverflow *[]*bmap       // keeps overflow buckets of hmap.oldbuckets alive
	startBucket uintptr        // bucket iteration started at
	offset      uint8          // intra-bucket offset to start from during iteration (should be big enough to hold bucketCnt-1)
	wrapped     bool           // already wrapped around from end of bucket array to beginning
	B           uint8
	i           uint8
	bucket      uintptr
	checkBucket uintptr
}

// bucketShift returns 1<<b, optimized for code generation.
func bucketShift(b uint8) uintptr {
	// Masking the shift amount allows overflow checks to be elided.
	return uintptr(1) << (b & (sys.PtrSize*8 - 1))
}

// bucketMask returns 1<<b - 1, optimized for code generation.
func bucketMask(b uint8) uintptr {
	return bucketShift(b) - 1
}

// tophash calculates the tophash value for hash.
func tophash(hash uintptr) uint8 {
	top := uint8(hash >> (sys.PtrSize*8 - 8))
	if top < minTopHash {
		top += minTopHash
	}
	return top
}

func evacuated(b *bmap) bool {
	h := b.tophash[0]
	return h > emptyOne && h < minTopHash
}

func (b *bmap) overflow(t *maptype) *bmap {
	return *(**bmap)(add(unsafe.Pointer(b), uintptr(t.bucketsize)-sys.PtrSize))
}

func (b *bmap) setoverflow(t *maptype, ovf *bmap) {
	*(**bmap)(add(unsafe.Pointer(b), uintptr(t.bucketsize)-sys.PtrSize)) = ovf
}

func (b *bmap) keys() unsafe.Pointer {
	return add(unsafe.Pointer(b), dataOffset)
}

// incrnoverflow increments h.noverflow.
// noverflow counts the number of overflow buckets.
// This is used to trigger same-size map growth.
// See also tooManyOverflowBuckets.
// To keep hmap small, noverflow is a uint16.
// When there are few buckets, noverflow is an exact count.
// When there are many buckets, noverflow is an approximate count.
func (h *hmap) incrnoverflow() {
	// We trigger same-size map growth if there are
	// as many overflow buckets as buckets.
	// We need to be able to count to 1<<h.B.
	if h.B < 16 {
		h.noverflow++
		return
	}
	// Increment with probability 1/(1<<(h.B-15)).
	// When we reach 1<<15 - 1, we will have approximately
	// as many overflow buckets as buckets.
	mask := uint32(1)<<(h.B-15) - 1
	// Example: if h.B == 18, then mask == 7,
	// and fastrand & 7 == 0 with probability 1/8.
	if fastrand()&mask == 0 {
		h.noverflow++
	}
}

func (h *hmap) newoverflow(t *maptype, b *bmap) *bmap {
	var ovf *bmap
	if h.extra != nil && h.extra.nextOverflow != nil {
		// We have preallocated overflow buckets available.
		// See makeBucketArray for more details.
		ovf = h.extra.nextOverflow
		if ovf.overflow(t) == nil {
			// We're not at the end of the preallocated overflow buckets. Bump the pointer.
			h.extra.nextOverflow = (*bmap)(add(unsafe.Pointer(ovf), uintptr(t.bucketsize)))
		} else {
			// This is the last preallocated overflow bucket.
			// Reset the overflow pointer on this bucket,
			// which was set to a non-nil sentinel value.
			ovf.setoverflow(t, nil)
			h.extra.nextOverflow = nil
		}
	} else {
		ovf = (*bmap)(newobject(t.bucket))
	}
	h.incrnoverflow()
	if t.bucket.ptrdata == 0 {
		h.createOverflow()
		*h.extra.overflow = append(*h.extra.overflow, ovf)
	}
	b.setoverflow(t, ovf)
	return ovf
}

func (h *hmap) createOverflow() {
	if h.extra == nil {
		h.extra = new(mapextra)
	}
	if h.extra.overflow == nil {
		h.extra.overflow = new([]*bmap)
	}
}

func makemap64(t *maptype, hint int64, h *hmap) *hmap {
	if int64(int(hint)) != hint {
		hint = 0
	}
	return makemap(t, int(hint), h)
}

// makemap_small implements Go map creation for make(map[k]v) and
// make(map[k]v, hint) when hint is known to be at most bucketCnt
// at compile time and the map needs to be allocated on the heap.
func makemap_small() *hmap {
	h := new(hmap)
	h.hash0 = fastrand()
	return h
}

// makemap implements Go map creation for make(map[k]v, hint).
// If the compiler has determined that the map or the first bucket
// can be created on the stack, h and/or bucket may be non-nil.
// If h != nil, the map can be created directly in h.
// If h.buckets != nil, bucket pointed to can be used as the first bucket.
func makemap(t *maptype, hint int, h *hmap) *hmap {
	mem, overflow := math.MulUintptr(uintptr(hint), t.bucket.size)
	if overflow || mem > maxAlloc {
		hint = 0
	}

	// initialize Hmap
	if h == nil {
		h = new(hmap)
	}
	h.hash0 = fastrand()

	// Find the size parameter B which will hold the requested # of elements.
	// For hint < 0 overLoadFactor returns false since hint < bucketCnt.
	B := uint8(0)
	for overLoadFactor(hint, B) {
		B++
	}
	h.B = B

	// allocate initial hash table
	// if B == 0, the buckets field is allocated lazily later (in mapassign)
	// If hint is large zeroing this memory could take a while.
	if h.B != 0 {
		var nextOverflow *bmap
		h.buckets, nextOverflow = makeBucketArray(t, h.B, nil)
		if nextOverflow != nil {
			h.extra = new(mapextra)
			h.extra.nextOverflow = nextOverflow
		}
	}

	return h
}

// makeBucketArray initializes a backing array for map buckets.
// 1<<b is the minimum number of buckets to allocate.
// dirtyalloc should either be nil or a bucket array previously
// allocated by makeBucketArray with the same t and b parameters.
// If dirtyalloc is nil a new backing array will be alloced and
// otherwise dirtyalloc will be cleared and reused as backing array.
func makeBucketArray(t *maptype, b uint8, dirtyalloc unsafe.Pointer) (buckets unsafe.Pointer, nextOverflow *bmap) {
	base := bucketShift(b)
	nbuckets := base
	// For small b, overflow buckets are unlikely.
	// Avoid the overhead of the calculation.
	if b >= 4 {
		// Add on the estimated number of overflow buckets
		// required to insert the median number of elements
		// used with this value of b.
		nbuckets += bucketShift(b - 4)
		sz := t.bucket.size * nbuckets
		up := roundupsize(sz)
		if up != sz {
			nbuckets = up / t.bucket.size
		}
	}

	if dirtyalloc == nil {
		buckets = newarray(t.bucket, int(nbuckets))
	} else {
		// dirtyalloc was previously generated by
		// the above newarray(t.bucket, int(nbuckets))
		// but may not be empty.
		buckets = dirtyalloc
		size := t.bucket.size * nbuckets
		if t.bucket.ptrdata != 0 {
			memclrHasPointers(buckets, size)
		} else {
			memclrNoHeapPointers(buckets, size)
		}
	}

	if base != nbuckets {
		// We preallocated some overflow buckets.
		// To keep the overhead of tracking these overflow buckets to a minimum,
		// we use the convention that if a preallocated overflow bucket's overflow
		// pointer is nil, then there are more available by bumping the pointer.
		// We need a safe non-nil pointer for the last overflow bucket; just use buckets.
		nextOverflow = (*bmap)(add(buckets, base*uintptr(t.bucketsize)))
		last := (*bmap)(add(buckets, (nbuckets-1)*uintptr(t.bucketsize)))
		last.setoverflow(t, (*bmap)(buckets))
	}
	return buckets, nextOverflow
}

// mapaccess1 returns a pointer to h[key].  Never returns nil, instead
// it will return a reference to the zero object for the elem type if
// the key is not in the map.
// NOTE: The returned pointer may keep the whole map live, so don't
// hold onto it for very long.
func mapaccess1(t *maptype, h *hmap, key unsafe.Pointer) unsafe.Pointer {
	if raceenabled && h != nil {
		callerpc := getcallerpc()
		pc := funcPC(mapaccess1)
		racereadpc(unsafe.Pointer(h), callerpc, pc)
		raceReadObjectPC(t.key, key, callerpc, pc)
	}
	if msanenabled && h != nil {
		msanread(key, t.key.size)
	}
	if h == nil || h.count == 0 {
		if t.hashMightPanic() {
			t.hasher(key, 0) // see issue 23734
		}
		return unsafe.Pointer(&zeroVal[0])
	}
	if h.flags&hashWriting != 0 {
		throw("concurrent map read and map write")
	}
	hash := t.hasher(key, uintptr(h.hash0))
	m := bucketMask(h.B)
	b := (*bmap)(add(h.buckets, (hash&m)*uintptr(t.bucketsize)))
	if c := h.oldbuckets; c != nil {
		if !h.sameSizeGrow() {
			// There used to be half as many buckets; mask down one more power of two.
			m >>= 1
		}
		oldb := (*bmap)(add(c, (hash&m)*uintptr(t.bucketsize)))
		if !evacuated(oldb) {
			b = oldb
		}
	}
	top := tophash(hash)
bucketloop:
	for ; b != nil; b = b.overflow(t) {
		for i := uintptr(0); i < bucketCnt; i++ {
			if b.tophash[i] != top {
				if b.tophash[i] == emptyRest {
					break bucketloop
				}
				continue
			}
			k := add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize))
			if t.indirectkey() {
				k = *((*unsafe.Pointer)(k))
			}
			if t.key.equal(key, k) {
				e := add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.elemsize))
				if t.indirectelem() {
					e = *((*unsafe.Pointer)(e))
				}
				return e
			}
		}
	}
	return unsafe.Pointer(&zeroVal[0])
}

func mapaccess2(t *maptype, h *hmap, key unsafe.Pointer) (unsafe.Pointer, bool) {
	if raceenabled && h != nil {
		callerpc := getcallerpc()
		pc := funcPC(mapaccess2)
		racereadpc(unsafe.Pointer(h), callerpc, pc)
		raceReadObjectPC(t.key, key, callerpc, pc)
	}
	if msanenabled && h != nil {
		msanread(key, t.key.size)
	}
	if h == nil || h.count == 0 {
		if t.hashMightPanic() {
			t.hasher(key, 0) // see issue 23734
		}
		return unsafe.Pointer(&zeroVal[0]), false
	}
	if h.flags&hashWriting != 0 {
		throw("concurrent map read and map write")
	}
	hash := t.hasher(key, uintptr(h.hash0))
	m := bucketMask(h.B)
	b := (*bmap)(unsafe.Pointer(uintptr(h.buckets) + (hash&m)*uintptr(t.bucketsize)))
	if c := h.oldbuckets; c != nil {
		if !h.sameSizeGrow() {
			// There used to be half as many buckets; mask down one more power of two.
			m >>= 1
		}
		oldb := (*bmap)(unsafe.Pointer(uintptr(c) + (hash&m)*uintptr(t.bucketsize)))
		if !evacuated(oldb) {
			b = oldb
		}
	}
	top := tophash(hash)
bucketloop:
	for ; b != nil; b = b.overflow(t) {
		for i := uintptr(0); i < bucketCnt; i++ {
			if b.tophash[i] != top {
				if b.tophash[i] == emptyRest {
					break bucketloop
				}
				continue
			}
			k := add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize))
			if t.indirectkey() {
				k = *((*unsafe.Pointer)(k))
			}
			if t.key.equal(key, k) {
				e := add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.elemsize))
				if t.indirectelem() {
					e = *((*unsafe.Pointer)(e))
				}
				return e, true
			}
		}
	}
	return unsafe.Pointer(&zeroVal[0]), false
}

// returns both key and elem. Used by map iterator
func mapaccessK(t *maptype, h *hmap, key unsafe.Pointer) (unsafe.Pointer, unsafe.Pointer) {
	if h == nil || h.count == 0 {
		return nil, nil
	}
	hash := t.hasher(key, uintptr(h.hash0))
	m := bucketMask(h.B)
	b := (*bmap)(unsafe.Pointer(uintptr(h.buckets) + (hash&m)*uintptr(t.bucketsize)))
	if c := h.oldbuckets; c != nil {
		if !h.sameSizeGrow() {
			// There used to be half as many buckets; mask down one more power of two.
			m >>= 1
		}
		oldb := (*bmap)(unsafe.Pointer(uintptr(c) + (hash&m)*uintptr(t.bucketsize)))
		if !evacuated(oldb) {
			b = oldb
		}
	}
	top := tophash(hash)
bucketloop:
	for ; b != nil; b = b.overflow(t) {
		for i := uintptr(0); i < bucketCnt; i++ {
			if b.tophash[i] != top {
				if b.tophash[i] == emptyRest {
					break bucketloop
				}
				continue
			}
			k := add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize))
			if t.indirectkey() {
				k = *((*unsafe.Pointer)(k))
			}
			if t.key.equal(key, k) {
				e := add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.elemsize))
				if t.indirectelem() {
					e = *((*unsafe.Pointer)(e))
				}
				return k, e
			}
		}
	}
	return nil, nil
}

func mapaccess1_fat(t *maptype, h *hmap, key, zero unsafe.Pointer) unsafe.Pointer {
	e := mapaccess1(t, h, key)
	if e == unsafe.Pointer(&zeroVal[0]) {
		return zero
	}
	return e
}

func mapaccess2_fat(t *maptype, h *hmap, key, zero unsafe.Pointer) (unsafe.Pointer, bool) {
	e := mapaccess1(t, h, key)
	if e == unsafe.Pointer(&zeroVal[0]) {
		return zero, false
	}
	return e, true
}

// Like mapaccess, but allocates a slot for the key if it is not present in the map.
func mapassign(t *maptype, h *hmap, key unsafe.Pointer) unsafe.Pointer {
	if h == nil {
		panic(plainError("assignment to entry in nil map"))
	}
	if raceenabled {
		callerpc := getcallerpc()
		pc := funcPC(mapassign)
		racewritepc(unsafe.Pointer(h), callerpc, pc)
		raceReadObjectPC(t.key, key, callerpc, pc)
	}
	if msanenabled {
		msanread(key, t.key.size)
	}
	if h.flags&hashWriting != 0 {
		throw("concurrent map writes")
	}
	hash := t.hasher(key, uintptr(h.hash0))

	// Set hashWriting after calling t.hasher, since t.hasher may panic,
	// in which case we have not actually done a write.
	h.flags ^= hashWriting

	if h.buckets == nil {
		h.buckets = newobject(t.bucket) // newarray(t.bucket, 1)
	}

again:
	bucket := hash & bucketMask(h.B)
	if h.growing() {
		growWork(t, h, bucket)
	}
	b := (*bmap)(unsafe.Pointer(uintptr(h.buckets) + bucket*uintptr(t.bucketsize)))
	top := tophash(hash)

	var inserti *uint8
	var insertk unsafe.Pointer
	var elem unsafe.Pointer
bucketloop:
	for {
		for i := uintptr(0); i < bucketCnt; i++ {
			if b.tophash[i] != top {
				if isEmpty(b.tophash[i]) && inserti == nil {
					inserti = &b.tophash[i]
					insertk = add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize))
					elem = add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.elemsize))
				}
				if b.tophash[i] == emptyRest {
					break bucketloop
				}
				continue
			}
			k := add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize))
			if t.indirectkey() {
				k = *((*unsafe.Pointer)(k))
			}
			if !t.key.equal(key, k) {
				continue
			}
			// already have a mapping for key. Update it.
			if t.needkeyupdate() {
				typedmemmove(t.key, k, key)
			}
			elem = add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.elemsize))
			goto done
		}
		ovf := b.overflow(t)
		if ovf == nil {
			break
		}
		b = ovf
	}

	// Did not find mapping for key. Allocate new cell & add entry.

	// If we hit the max load factor or we have too many overflow buckets,
	// and we're not already in the middle of growing, start growing.
	if !h.growing() && (overLoadFactor(h.count+1, h.B) || tooManyOverflowBuckets(h.noverflow, h.B)) {
		hashGrow(t, h)
		goto again // Growing the table invalidates everything, so try again
	}

	if inserti == nil {
		// all current buckets are full, allocate a new one.
		newb := h.newoverflow(t, b)
		inserti = &newb.tophash[0]
		insertk = add(unsafe.Pointer(newb), dataOffset)
		elem = add(insertk, bucketCnt*uintptr(t.keysize))
	}

	// store new key/elem at insert position
	if t.indirectkey() {
		kmem := newobject(t.key)
		*(*unsafe.Pointer)(insertk) = kmem
		insertk = kmem
	}
	if t.indirectelem() {
		vmem := newobject(t.elem)
		*(*unsafe.Pointer)(elem) = vmem
	}
	typedmemmove(t.key, insertk, key)
	*inserti = top
	h.count++

done:
	if h.flags&hashWriting == 0 {
		throw("concurrent map writes")
	}
	h.flags &^= hashWriting
	if t.indirectelem() {
		elem = *((*unsafe.Pointer)(elem))
	}
	return elem
}

func mapdelete(t *maptype, h *hmap, key unsafe.Pointer) {
	if raceenabled && h != nil {
		callerpc := getcallerpc()
		pc := funcPC(mapdelete)
		racewritepc(unsafe.Pointer(h), callerpc, pc)
		raceReadObjectPC(t.key, key, callerpc, pc)
	}
	if msanenabled && h != nil {
		msanread(key, t.key.size)
	}
	if h == nil || h.count == 0 {
		if t.hashMightPanic() {
			t.hasher(key, 0) // see issue 23734
		}
		return
	}
	if h.flags&hashWriting != 0 {
		throw("concurrent map writes")
	}

	hash := t.hasher(key, uintptr(h.hash0))

	// Set hashWriting after calling t.hasher, since t.hasher may panic,
	// in which case we have not actually done a write (delete).
	h.flags ^= hashWriting

	bucket := hash & bucketMask(h.B)
	if h.growing() {
		growWork(t, h, bucket)
	}
	b := (*bmap)(add(h.buckets, bucket*uintptr(t.bucketsize)))
	bOrig := b
	top := tophash(hash)
search:
	for ; b != nil; b = b.overflow(t) {
		for i := uintptr(0); i < bucketCnt; i++ {
			if b.tophash[i] != top {
				if b.tophash[i] == emptyRest {
					break search
				}
				continue
			}
			k := add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize))
			k2 := k
			if t.indirectkey() {
				k2 = *((*unsafe.Pointer)(k2))
			}
			if !t.key.equal(key, k2) {
				continue
			}
			// Only clear key if there are pointers in it.
			if t.indirectkey() {
				*(*unsafe.Pointer)(k) = nil
			} else if t.key.ptrdata != 0 {
				memclrHasPointers(k, t.key.size)
			}
			e := add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.elemsize))
			if t.indirectelem() {
				*(*unsafe.Pointer)(e) = nil
			} else if t.elem.ptrdata != 0 {
				memclrHasPointers(e, t.elem.size)
			} else {
				memclrNoHeapPointers(e, t.elem.size)
			}
			b.tophash[i] = emptyOne
			// If the bucket now ends in a bunch of emptyOne states,
			// change those to emptyRest states.
			// It would be nice to make this a separate function, but
			// for loops are not currently inlineable.
			if i == bucketCnt-1 {
				if b.overflow(t) != nil && b.overflow(t).tophash[0] != emptyRest {
					goto notLast
				}
			} else {
				if b.tophash[i+1] != emptyRest {
					goto notLast
				}
			}
			for {
				b.tophash[i] = emptyRest
				if i == 0 {
					if b == bOrig {
						break // beginning of initial bucket, we're done.
					}
					// Find previous bucket, continue at its last entry.
					c := b
					for b = bOrig; b.overflow(t) != c; b = b.overflow(t) {
					}
					i = bucketCnt - 1
				} else {
					i--
				}
				if b.tophash[i] != emptyOne {
					break
				}
			}
		notLast:
			h.count--
			break search
		}
	}

	if h.flags&hashWriting == 0 {
		throw("concurrent map writes")
	}
	h.flags &^= hashWriting
}

// mapiterinit initializes the hiter struct used for ranging over maps.
// The hiter struct pointed to by 'it' is allocated on the stack
// by the compilers order pass or on the heap by reflect_mapiterinit.
// Both need to have zeroed hiter since the struct contains pointers.
func mapiterinit(t *maptype, h *hmap, it *hiter) {
	if raceenabled && h != nil {
		callerpc := getcallerpc()
		racereadpc(unsafe.Pointer(h), callerpc, funcPC(mapiterinit))
	}

	if h == nil || h.count == 0 {
		return
	}

	if unsafe.Sizeof(hiter{})/sys.PtrSize != 12 {
		throw("hash_iter size incorrect") // see cmd/compile/internal/gc/reflect.go
	}
	it.t = t
	it.h = h

	// grab snapshot of bucket state
	it.B = h.B
	it.buckets = h.buckets
	if t.bucket.ptrdata == 0 {
		// Allocate the current slice and remember pointers to both current and old.
		// This preserves all relevant overflow buckets alive even if
		// the table grows and/or overflow buckets are added to the table
		// while we are iterating.
		h.createOverflow()
		it.overflow = h.extra.overflow
		it.oldoverflow = h.extra.oldoverflow
	}

	// decide where to start
	r := uintptr(fastrand())
	if h.B > 31-bucketCntBits {
		r += uintptr(fastrand()) << 31
	}
	it.startBucket = r & bucketMask(h.B)
	it.offset = uint8(r >> h.B & (bucketCnt - 1))

	// iterator state
	it.bucket = it.startBucket

	// Remember we have an iterator.
	// Can run concurrently with another mapiterinit().
	if old := h.flags; old&(iterator|oldIterator) != iterator|oldIterator {
		atomic.Or8(&h.flags, iterator|oldIterator)
	}

	mapiternext(it)
}

func mapiternext(it *hiter) {
	h := it.h
	if raceenabled {
		callerpc := getcallerpc()
		racereadpc(unsafe.Pointer(h), callerpc, funcPC(mapiternext))
	}
	if h.flags&hashWriting != 0 {
		throw("concurrent map iteration and map write")
	}
	t := it.t
	bucket := it.bucket
	b := it.bptr
	i := it.i
	checkBucket := it.checkBucket

next:
	if b == nil {
		if bucket == it.startBucket && it.wrapped {
			// end of iteration
			it.key = nil
			it.elem = nil
			return
		}
		if h.growing() && it.B == h.B {
			// Iterator was started in the middle of a grow, and the grow isn't done yet.
			// If the bucket we're looking at hasn't been filled in yet (i.e. the old
			// bucket hasn't been evacuated) then we need to iterate through the old
			// bucket and only return the ones that will be migrated to this bucket.
			oldbucket := bucket & it.h.oldbucketmask()
			b = (*bmap)(add(h.oldbuckets, oldbucket*uintptr(t.bucketsize)))
			if !evacuated(b) {
				checkBucket = bucket
			} else {
				b = (*bmap)(add(it.buckets, bucket*uintptr(t.bucketsize)))
				checkBucket = noCheck
			}
		} else {
			b = (*bmap)(add(it.buckets, bucket*uintptr(t.bucketsize)))
			checkBucket = noCheck
		}
		bucket++
		if bucket == bucketShift(it.B) {
			bucket = 0
			it.wrapped = true
		}
		i = 0
	}
	for ; i < bucketCnt; i++ {
		offi := (i + it.offset) & (bucketCnt - 1)
		if isEmpty(b.tophash[offi]) || b.tophash[offi] == evacuatedEmpty {
			// TODO: emptyRest is hard to use here, as we start iterating
			// in the middle of a bucket. It's feasible, just tricky.
			continue
		}
		k := add(unsafe.Pointer(b), dataOffset+uintptr(offi)*uintptr(t.keysize))
		if t.indirectkey() {
			k = *((*unsafe.Pointer)(k))
		}
		e := add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+uintptr(offi)*uintptr(t.elemsize))
		if checkBucket != noCheck && !h.sameSizeGrow() {
			// Special case: iterator was started during a grow to a larger size
			// and the grow is not done yet. We're working on a bucket whose
			// oldbucket has not been evacuated yet. Or at least, it wasn't
			// evacuated when we started the bucket. So we're iterating
			// through the oldbucket, skipping any keys that will go
			// to the other new bucket (each oldbucket expands to two
			// buckets during a grow).
			if t.reflexivekey() || t.key.equal(k, k) {
				// If the item in the oldbucket is not destined for
				// the current new bucket in the iteration, skip it.
				hash := t.hasher(k, uintptr(h.hash0))
				if hash&bucketMask(it.B) != checkBucket {
					continue
				}
			} else {
				// Hash isn't repeatable if k != k (NaNs).  We need a
				// repeatable and randomish choice of which direction
				// to send NaNs during evacuation. We'll use the low
				// bit of tophash to decide which way NaNs go.
				// NOTE: this case is why we need two evacuate tophash
				// values, evacuatedX and evacuatedY, that differ in
				// their low bit.
				if checkBucket>>(it.B-1) != uintptr(b.tophash[offi]&1) {
					continue
				}
			}
		}
		if (b.tophash[offi] != evacuatedX && b.tophash[offi] != evacuatedY) ||
			!(t.reflexivekey() || t.key.equal(k, k)) {
			// This is the golden data, we can return it.
			// OR
			// key!=key, so the entry can't be deleted or updated, so we can just return it.
			// That's lucky for us because when key!=key we can't look it up successfully.
			it.key = k
			if t.indirectelem() {
				e = *((*unsafe.Pointer)(e))
			}
			it.elem = e
		} else {
			// The hash table has grown since the iterator was started.
			// The golden data for this key is now somewhere else.
			// Check the current hash table for the data.
			// This code handles the case where the key
			// has been deleted, updated, or deleted and reinserted.
			// NOTE: we need to regrab the key as it has potentially been
			// updated to an equal() but not identical key (e.g. +0.0 vs -0.0).
			rk, re := mapaccessK(t, h, k)
			if rk == nil {
				continue // key has been deleted
			}
			it.key = rk
			it.elem = re
		}
		it.bucket = bucket
		if it.bptr != b { // avoid unnecessary write barrier; see issue 14921
			it.bptr = b
		}
		it.i = i + 1
		it.checkBucket = checkBucket
		return
	}
	b = b.overflow(t)
	i = 0
	goto next
}

// mapclear deletes all keys from a map.
func mapclear(t *maptype, h *hmap) {
	if raceenabled && h != nil {
		callerpc := getcallerpc()
		pc := funcPC(mapclear)
		racewritepc(unsafe.Pointer(h), callerpc, pc)
	}

	if h == nil || h.count == 0 {
		return
	}

	if h.flags&hashWriting != 0 {
		throw("concurrent map writes")
	}

	h.flags ^= hashWriting

	h.flags &^= sameSizeGrow
	h.oldbuckets = nil
	h.nevacuate = 0
	h.noverflow = 0
	h.count = 0

	// Keep the mapextra allocation but clear any extra information.
	if h.extra != nil {
		*h.extra = mapextra{}
	}

	// makeBucketArray clears the memory pointed to by h.buckets
	// and recovers any overflow buckets by generating them
	// as if h.buckets was newly alloced.
	_, nextOverflow := makeBucketArray(t, h.B, h.buckets)
	if nextOverflow != nil {
		// If overflow buckets are created then h.extra
		// will have been allocated during initial bucket creation.
		h.extra.nextOverflow = nextOverflow
	}

	if h.flags&hashWriting == 0 {
		throw("concurrent map writes")
	}
	h.flags &^= hashWriting
}

func hashGrow(t *maptype, h *hmap) {
	// If we've hit the load factor, get bigger.
	// Otherwise, there are too many overflow buckets,
	// so keep the same number of buckets and "grow" laterally.
	bigger := uint8(1)
	if !overLoadFactor(h.count+1, h.B) {
		bigger = 0
		h.flags |= sameSizeGrow
	}
	oldbuckets := h.buckets
	newbuckets, nextOverflow := makeBucketArray(t, h.B+bigger, nil)

	flags := h.flags &^ (iterator | oldIterator)
	if h.flags&iterator != 0 {
		flags |= oldIterator
	}
	// commit the grow (atomic wrt gc)
	h.B += bigger
	h.flags = flags
	h.oldbuckets = oldbuckets
	h.buckets = newbuckets
	h.nevacuate = 0
	h.noverflow = 0

	if h.extra != nil && h.extra.overflow != nil {
		// Promote current overflow buckets to the old generation.
		if h.extra.oldoverflow != nil {
			throw("oldoverflow is not nil")
		}
		h.extra.oldoverflow = h.extra.overflow
		h.extra.overflow = nil
	}
	if nextOverflow != nil {
		if h.extra == nil {
			h.extra = new(mapextra)
		}
		h.extra.nextOverflow = nextOverflow
	}

	// the actual copying of the hash table data is done incrementally
	// by growWork() and evacuate().
}

// overLoadFactor reports whether count items placed in 1<<B buckets is over loadFactor.
func overLoadFactor(count int, B uint8) bool {
	return count > bucketCnt && uintptr(count) > loadFactorNum*(bucketShift(B)/loadFactorDen)
}

// tooManyOverflowBuckets reports whether noverflow buckets is too many for a map with 1<<B buckets.
// Note that most of these overflow buckets must be in sparse use;
// if use was dense, then we'd have already triggered regular map growth.
func tooManyOverflowBuckets(noverflow uint16, B uint8) bool {
	// If the threshold is too low, we do extraneous work.
	// If the threshold is too high, maps that grow and shrink can hold on to lots of unused memory.
	// "too many" means (approximately) as many overflow buckets as regular buckets.
	// See incrnoverflow for more details.
	if B > 15 {
		B = 15
	}
	// The compiler doesn't see here that B < 16; mask B to generate shorter shift code.
	return noverflow >= uint16(1)<<(B&15)
}

// growing reports whether h is growing. The growth may be to the same size or bigger.
func (h *hmap) growing() bool {
	return h.oldbuckets != nil
}

// sameSizeGrow reports whether the current growth is to a map of the same size.
func (h *hmap) sameSizeGrow() bool {
	return h.flags&sameSizeGrow != 0
}

// noldbuckets calculates the number of buckets prior to the current map growth.
func (h *hmap) noldbuckets() uintptr {
	oldB := h.B
	if !h.sameSizeGrow() {
		oldB--
	}
	return bucketShift(oldB)
}

// oldbucketmask provides a mask that can be applied to calculate n % noldbuckets().
func (h *hmap) oldbucketmask() uintptr {
	return h.noldbuckets() - 1
}

func growWork(t *maptype, h *hmap, bucket uintptr) {
	// make sure we evacuate the oldbucket corresponding
	// to the bucket we're about to use
	evacuate(t, h, bucket&h.oldbucketmask())

	// evacuate one more oldbucket to make progress on growing
	if h.growing() {
		evacuate(t, h, h.nevacuate)
	}
}

func bucketEvacuated(t *maptype, h *hmap, bucket uintptr) bool {
	b := (*bmap)(add(h.oldbuckets, bucket*uintptr(t.bucketsize)))
	return evacuated(b)
}

// evacDst is an evacuation destination.
type evacDst struct {
	b *bmap          // current destination bucket
	i int            // key/elem index into b
	k unsafe.Pointer // pointer to current key storage
	e unsafe.Pointer // pointer to current elem storage
}

func evacuate(t *maptype, h *hmap, oldbucket uintptr) {
	b := (*bmap)(add(h.oldbuckets, oldbucket*uintptr(t.bucketsize)))
	newbit := h.noldbuckets()
	if !evacuated(b) {
		// TODO: reuse overflow buckets instead of using new ones, if there
		// is no iterator using the old buckets.  (If !oldIterator.)

		// xy contains the x and y (low and high) evacuation destinations.
		var xy [2]evacDst
		x := &xy[0]
		x.b = (*bmap)(add(h.buckets, oldbucket*uintptr(t.bucketsize)))
		x.k = add(unsafe.Pointer(x.b), dataOffset)
		x.e = add(x.k, bucketCnt*uintptr(t.keysize))

		if !h.sameSizeGrow() {
			// Only calculate y pointers if we're growing bigger.
			// Otherwise GC can see bad pointers.
			y := &xy[1]
			y.b = (*bmap)(add(h.buckets, (oldbucket+newbit)*uintptr(t.bucketsize)))
			y.k = add(unsafe.Pointer(y.b), dataOffset)
			y.e = add(y.k, bucketCnt*uintptr(t.keysize))
		}

		for ; b != nil; b = b.overflow(t) {
			k := add(unsafe.Pointer(b), dataOffset)
			e := add(k, bucketCnt*uintptr(t.keysize))
			for i := 0; i < bucketCnt; i, k, e = i+1, add(k, uintptr(t.keysize)), add(e, uintptr(t.elemsize)) {
				top := b.tophash[i]
				if isEmpty(top) {
					b.tophash[i] = evacuatedEmpty
					continue
				}
				if top < minTopHash {
					throw("bad map state")
				}
				k2 := k
				if t.indirectkey() {
					k2 = *((*unsafe.Pointer)(k2))
				}
				var useY uint8
				if !h.sameSizeGrow() {
					// Compute hash to make our evacuation decision (whether we need
					// to send this key/elem to bucket x or bucket y).
					hash := t.hasher(k2, uintptr(h.hash0))
					if h.flags&iterator != 0 && !t.reflexivekey() && !t.key.equal(k2, k2) {
						// If key != key (NaNs), then the hash could be (and probably
						// will be) entirely different from the old hash. Moreover,
						// it isn't reproducible. Reproducibility is required in the
						// presence of iterators, as our evacuation decision must
						// match whatever decision the iterator made.
						// Fortunately, we have the freedom to send these keys either
						// way. Also, tophash is meaningless for these kinds of keys.
						// We let the low bit of tophash drive the evacuation decision.
						// We recompute a new random tophash for the next level so
						// these keys will get evenly distributed across all buckets
						// after multiple grows.
						useY = top & 1
						top = tophash(hash)
					} else {
						if hash&newbit != 0 {
							useY = 1
						}
					}
				}

				if evacuatedX+1 != evacuatedY || evacuatedX^1 != evacuatedY {
					throw("bad evacuatedN")
				}

				b.tophash[i] = evacuatedX + useY // evacuatedX + 1 == evacuatedY
				dst := &xy[useY]                 // evacuation destination

				if dst.i == bucketCnt {
					dst.b = h.newoverflow(t, dst.b)
					dst.i = 0
					dst.k = add(unsafe.Pointer(dst.b), dataOffset)
					dst.e = add(dst.k, bucketCnt*uintptr(t.keysize))
				}
				dst.b.tophash[dst.i&(bucketCnt-1)] = top // mask dst.i as an optimization, to avoid a bounds check
				if t.indirectkey() {
					*(*unsafe.Pointer)(dst.k) = k2 // copy pointer
				} else {
					typedmemmove(t.key, dst.k, k) // copy elem
				}
				if t.indirectelem() {
					*(*unsafe.Pointer)(dst.e) = *(*unsafe.Pointer)(e)
				} else {
					typedmemmove(t.elem, dst.e, e)
				}
				dst.i++
				// These updates might push these pointers past the end of the
				// key or elem arrays.  That's ok, as we have the overflow pointer
				// at the end of the bucket to protect against pointing past the
				// end of the bucket.
				dst.k = add(dst.k, uintptr(t.keysize))
				dst.e = add(dst.e, uintptr(t.elemsize))
			}
		}
		// Unlink the overflow buckets & clear key/elem to help GC.
		if h.flags&oldIterator == 0 && t.bucket.ptrdata != 0 {
			b := add(h.oldbuckets, oldbucket*uintptr(t.bucketsize))
			// Preserve b.tophash because the evacuation
			// state is maintained there.
			ptr := add(b, dataOffset)
			n := uintptr(t.bucketsize) - dataOffset
			memclrHasPointers(ptr, n)
		}
	}

	if oldbucket == h.nevacuate {
		advanceEvacuationMark(h, t, newbit)
	}
}

func advanceEvacuationMark(h *hmap, t *maptype, newbit uintptr) {
	h.nevacuate++
	// Experiments suggest that 1024 is overkill by at least an order of magnitude.
	// Put it in there as a safeguard anyway, to ensure O(1) behavior.
	stop := h.nevacuate + 1024
	if stop > newbit {
		stop = newbit
	}
	for h.nevacuate != stop && bucketEvacuated(t, h, h.nevacuate) {
		h.nevacuate++
	}
	if h.nevacuate == newbit { // newbit == # of oldbuckets
		// Growing is all done. Free old main bucket array.
		h.oldbuckets = nil
		// Can discard old overflow buckets as well.
		// If they are still referenced by an iterator,
		// then the iterator holds a pointers to the slice.
		if h.extra != nil {
			h.extra.oldoverflow = nil
		}
		h.flags &^= sameSizeGrow
	}
}

// Reflect stubs. Called from ../reflect/asm_*.s

//go:linkname reflect_makemap reflect.makemap
func reflect_makemap(t *maptype, cap int) *hmap {
	// Check invariants and reflects math.
	if t.key.equal == nil {
		throw("runtime.reflect_makemap: unsupported map key type")
	}
	if t.key.size > maxKeySize && (!t.indirectkey() || t.keysize != uint8(sys.PtrSize)) ||
		t.key.size <= maxKeySize && (t.indirectkey() || t.keysize != uint8(t.key.size)) {
		throw("key size wrong")
	}
	if t.elem.size > maxElemSize && (!t.indirectelem() || t.elemsize != uint8(sys.PtrSize)) ||
		t.elem.size <= maxElemSize && (t.indirectelem() || t.elemsize != uint8(t.elem.size)) {
		throw("elem size wrong")
	}
	if t.key.align > bucketCnt {
		throw("key align too big")
	}
	if t.elem.align > bucketCnt {
		throw("elem align too big")
	}
	if t.key.size%uintptr(t.key.align) != 0 {
		throw("key size not a multiple of key align")
	}
	if t.elem.size%uintptr(t.elem.align) != 0 {
		throw("elem size not a multiple of elem align")
	}
	if bucketCnt < 8 {
		throw("bucketsize too small for proper alignment")
	}
	if dataOffset%uintptr(t.key.align) != 0 {
		throw("need padding in bucket (key)")
	}
	if dataOffset%uintptr(t.elem.align) != 0 {
		throw("need padding in bucket (elem)")
	}

	return makemap(t, cap, nil)
}

//go:linkname reflect_mapaccess reflect.mapaccess
func reflect_mapaccess(t *maptype, h *hmap, key unsafe.Pointer) unsafe.Pointer {
	elem, ok := mapaccess2(t, h, key)
	if !ok {
		// reflect wants nil for a missing element
		elem = nil
	}
	return elem
}

//go:linkname reflect_mapassign reflect.mapassign
func reflect_mapassign(t *maptype, h *hmap, key unsafe.Pointer, elem unsafe.Pointer) {
	p := mapassign(t, h, key)
	typedmemmove(t.elem, p, elem)
}

//go:linkname reflect_mapdelete reflect.mapdelete
func reflect_mapdelete(t *maptype, h *hmap, key unsafe.Pointer) {
	mapdelete(t, h, key)
}

//go:linkname reflect_mapiterinit reflect.mapiterinit
func reflect_mapiterinit(t *maptype, h *hmap) *hiter {
	it := new(hiter)
	mapiterinit(t, h, it)
	return it
}

//go:linkname reflect_mapiternext reflect.mapiternext
func reflect_mapiternext(it *hiter) {
	mapiternext(it)
}

//go:linkname reflect_mapiterkey reflect.mapiterkey
func reflect_mapiterkey(it *hiter) unsafe.Pointer {
	return it.key
}

//go:linkname reflect_mapiterelem reflect.mapiterelem
func reflect_mapiterelem(it *hiter) unsafe.Pointer {
	return it.elem
}

//go:linkname reflect_maplen reflect.maplen
func reflect_maplen(h *hmap) int {
	if h == nil {
		return 0
	}
	if raceenabled {
		callerpc := getcallerpc()
		racereadpc(unsafe.Pointer(h), callerpc, funcPC(reflect_maplen))
	}
	return h.count
}

//go:linkname reflectlite_maplen internal/reflectlite.maplen
func reflectlite_maplen(h *hmap) int {
	if h == nil {
		return 0
	}
	if raceenabled {
		callerpc := getcallerpc()
		racereadpc(unsafe.Pointer(h), callerpc, funcPC(reflect_maplen))
	}
	return h.count
}

const maxZero = 1024 // must match value in cmd/compile/internal/gc/walk.go:zeroValSize
var zeroVal [maxZero]byte

3.源碼註釋說明

A map is just a hash table. The data is arranged into an array of buckets. Each bucket contains up to 8 key/elem pairs. The low-order bits of the hash are used to select a bucket. Each bucket contains a few high-order bits of each hash to distinguish the entries within a single bucket.

map只是一個hash table。 數據被安排在一系列存儲桶中。 每個存儲桶最多包含8個鍵/元素對。 哈希的低位用於選擇存儲桶。 每個存儲桶包含每個哈希的一些高階位,以區分單個存儲桶中的條目。

If more than 8 keys hash to a bucket, we chain on extra buckets.

如果有8個以上的鍵散列到存儲桶中,我們將鏈接到其他存儲桶。

When the hashtable grows, we allocate a new array  of buckets twice as big. Buckets are incrementally copied from the old bucket array to the new bucket array.

當hash table增長時,我們將分配一個新的存儲桶數組作爲兩倍大。 將存儲桶以增量方式從舊存儲桶陣列複製到新存儲桶陣列。

Map iterators walk through the array of buckets and return the keys in walk order (bucket #, then overflow chain order, then bucket index).  To maintain iteration semantics, we never move keys within their bucket (if  we did, keys might be returned 0 or 2 times).  When growing the table, iterators remain iterating through the old table and must check the new table if the bucket  they are iterating through has been moved ("evacuated") to the new table.

map迭代器遍歷存儲桶數組,並按迭代順序返回鍵(存儲桶編號,然後是溢出鏈順序,然後是存儲桶索引)。 爲了維持迭代語義,我們絕不會在鍵的存儲桶中移動鍵(如果這樣做,鍵可能會返回02次)。 在擴大table時,迭代器將繼續在舊錶中進行迭代,並且必須檢查新表是否將要迭代的存儲桶(“撤離”)到新表中。

Picking loadFactor: too large and we have lots of overflow  buckets, too small and we waste a lot of space. I wrote a simple program to check some stats for different loads: (64-bit, 8 byte keys and elems)

選擇loadFactor【裝載因子】:太大,我們有很多溢出桶,太小,我們浪費了很多空間。 我編寫了一個簡單的程序來檢查一些不同負載的統計信息:(64位,8字節keys和elems)
//  裝載因子       溢出百分比  鍵/元素對開銷 查找鍵時檢查條目數 缺失鍵時要檢查的條目數
//  loadFactor    %overflow  bytes/entry     hitprobe    missprobe
//        4.00         2.13        20.77         3.00         4.00
//        4.50         4.05        17.30         3.25         4.50
//        5.00         6.85        14.77         3.50         5.00
//        5.50        10.55        12.94         3.75         5.50
//        6.00        15.27        11.67         4.00         6.00
//        6.50        20.90        10.79         4.25         6.50
//        7.00        27.14        10.15         4.50         7.00
//        7.50        34.03         9.73         4.75         7.50
//        8.00        41.10         9.40         5.00         8.00
// %overflow   = percentage of buckets which have an overflow bucket
// bytes/entry = overhead bytes used per key/elem pair
// hitprobe    = # of entries to check when looking up a present key
// missprobe   = # of entries to check when looking up an absent key
// %overflow =具有溢出桶的桶的百分比
// bytes/entry=每個鍵/元素對使用的開銷字節
// hitprobe =查找當前密鑰時要檢查的條目數
// missprobe =查找缺失鍵時要檢查的條目數

Keep in mind this data is for maximally loaded tables, i.e. just before the table grows. Typical tables will be somewhat less loaded.

請記住,此數據用於最大加載的table,即table增長之前。 典型的table將少加載。

4.map定義的結構體hmap

// A header for a Go map.
type hmap struct {
	// Note: the format of the hmap is also encoded in cmd/compile/internal/gc/reflect.go.
	// Make sure this stays in sync with the compiler's definition.
	count     int // # live cells == size of map.  Must be first (used by len() builtin)
	flags     uint8
	B         uint8  // log_2 of # of buckets (can hold up to loadFactor * 2^B items)
	noverflow uint16 // approximate number of overflow buckets; see incrnoverflow for details
	hash0     uint32 // hash seed

	buckets    unsafe.Pointer // array of 2^B Buckets. may be nil if count==0.
	oldbuckets unsafe.Pointer // previous bucket array of half the size, non-nil only when growing
	nevacuate  uintptr        // progress counter for evacuation (buckets less than this have been evacuated)

	extra *mapextra // optional fields
}
// A header for a Go map.
type hmap struct {
	// 元素個數,調用 len(map) 時,直接返回此值
	count     int 
	// 標記,對應文件中定義的常量值8421四個常量值
	flags     uint8
	//  buckets 的對數 log_2,B 是 buckets 數組的長度的對數,也就是說 buckets 數組的長度就是 2^B。bucket 裏面存儲了 key 和 value
	B         uint8  
	// overflow 的 bucket 近似值
	noverflow uint16 
	// hash值計算的種子:hash seed
	hash0     uint32 
	// 指向 buckets 數組,大小爲 2^B,如果元素個數爲0,就爲 nil
	buckets    unsafe.Pointer
	// 前一個存儲桶數組的一半大小,即在擴容的時候,buckets長度回事oldbuckets的兩倍,只有在增長時才爲nil
	oldbuckets unsafe.Pointer 
	// 指示擴容進度,小於此地址的 buckets 遷移完成
	nevacuate  uintptr
	// 可選字段
	extra *mapextra 
}

flags 四個常量值:

// flags
iterator     = 1 // there may be an iterator using buckets
oldIterator  = 2 // there may be an iterator using oldbuckets
hashWriting  = 4 // a goroutine is writing to the map
sameSizeGrow = 8 // the current map growth is to a new map of the same size
發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章