python實現感知機模型

這篇文章通過對花鳶尾屬植物進行分類,來學習如何利用實際數據構建一個感知機模型,(文末附GD和SGD參數更新手推公式)。

目錄

一、數據集

二、需要導入的庫

三、讀取數據集

四、數據散點圖可視化

五、利用感知機模型進行線性分類 

六、不同學習率損失可視化對比

七、歸一化後分類

八、隨機梯度下降

九、完整的代碼

 十、公式推導:


一、數據集

Iris數據集是常用的分類實驗數據集,由Fisher, 1936收集整理。Iris也稱鳶尾花卉數據集,是一類多重變量分析的數據集。數據集包含150個數據樣本,分爲3類,每類50個數據,每個數據包含4個屬性。可通過花萼長度,花萼寬度,花瓣長度,花瓣寬度4個屬性預測鳶尾花卉屬於(Setosa,Versicolour,Virginica)三個種類中的哪一類。

iris以鳶尾花的特徵作爲數據來源,常用在分類操作中。該數據集由3種不同類型的鳶尾花的各50個樣本數據構成。其中的一個種類與另外兩個種類是線性可分離的,後兩個種類是非線性可分離的。

該數據集包含了4個屬性:

& Sepal.Length(花萼長度),單位是cm;

& Sepal.Width(花萼寬度),單位是cm;

& Petal.Length(花瓣長度),單位是cm;

& Petal.Width(花瓣寬度),單位是cm;

種類:Iris Setosa(山鳶尾)、Iris Versicolour(雜色鳶尾),以及Iris Virginica(維吉尼亞鳶尾)。

二、需要導入的庫

import pandas as pd
import matplotlib.pyplot as plt
import numpy as np

from matplotlib.colors import ListedColormap
#from sklearn.linear_model import Perceptron
import Perceptron as perceptron_class

三、讀取數據集

df = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data', header=None)
df.tail()
#抽取出前100條樣本,這正好是Setosa和Versicolor對應的樣本,我們將Versicolor對應的數據作爲類別1,Setosa對應的作爲-1。
# 對於特徵,我們抽取出sepal length和petal length兩維度特徵,然後用散點圖對數據進行可視化
#We extract the first 100 class labels that correspond to 50 Iris-Setosa and 50 Iris-Versicolor flowers.
y = df.iloc[0:100, 4].values
print(y)

y = np.where(y == 'Iris-setosa', -1, 1)#滿足條件(condition),輸出x,不滿足輸出y。
print(y)

X = df.iloc[0:100, [0, 2]].values
print(X)
print(X.shape,y.shape)#(100,2) (100,)

結果:

['Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa'
 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa'
 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa'
 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa'
 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa'
 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa'
 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa'
 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa'
 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa'
 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa'
 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor'
 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor'
 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor'
 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor'
 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor'
 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor'
 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor'
 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor'
 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor'
 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor'
 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor'
 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor'
 'Iris-versicolor' 'Iris-versicolor']
[-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
 -1 -1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1
  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1
  1  1  1  1]
[[5.1 1.4]
 [4.9 1.4]
 [4.7 1.3]
 [4.6 1.5]
 [5.  1.4]
 [5.4 1.7]
 [4.6 1.4]
 [5.  1.5]
 [4.4 1.4]
 [4.9 1.5]
 [5.4 1.5]
 [4.8 1.6]
 [4.8 1.4]
 [4.3 1.1]
 [5.8 1.2]
 [5.7 1.5]
 [5.4 1.3]
 [5.1 1.4]
 [5.7 1.7]
 [5.1 1.5]
 [5.4 1.7]
 [5.1 1.5]
 [4.6 1. ]
 [5.1 1.7]
 [4.8 1.9]
 [5.  1.6]
 [5.  1.6]
 [5.2 1.5]
 [5.2 1.4]
 [4.7 1.6]
 [4.8 1.6]
 [5.4 1.5]
 [5.2 1.5]
 [5.5 1.4]
 [4.9 1.5]
 [5.  1.2]
 [5.5 1.3]
 [4.9 1.5]
 [4.4 1.3]
 [5.1 1.5]
 [5.  1.3]
 [4.5 1.3]
 [4.4 1.3]
 [5.  1.6]
 [5.1 1.9]
 [4.8 1.4]
 [5.1 1.6]
 [4.6 1.4]
 [5.3 1.5]
 [5.  1.4]
 [7.  4.7]
 [6.4 4.5]
 [6.9 4.9]
 [5.5 4. ]
 [6.5 4.6]
 [5.7 4.5]
 [6.3 4.7]
 [4.9 3.3]
 [6.6 4.6]
 [5.2 3.9]
 [5.  3.5]
 [5.9 4.2]
 [6.  4. ]
 [6.1 4.7]
 [5.6 3.6]
 [6.7 4.4]
 [5.6 4.5]
 [5.8 4.1]
 [6.2 4.5]
 [5.6 3.9]
 [5.9 4.8]
 [6.1 4. ]
 [6.3 4.9]
 [6.1 4.7]
 [6.4 4.3]
 [6.6 4.4]
 [6.8 4.8]
 [6.7 5. ]
 [6.  4.5]
 [5.7 3.5]
 [5.5 3.8]
 [5.5 3.7]
 [5.8 3.9]
 [6.  5.1]
 [5.4 4.5]
 [6.  4.5]
 [6.7 4.7]
 [6.3 4.4]
 [5.6 4.1]
 [5.5 4. ]
 [5.5 4.4]
 [6.1 4.6]
 [5.8 4. ]
 [5.  3.3]
 [5.6 4.2]
 [5.7 4.2]
 [5.7 4.2]
 [6.2 4.3]
 [5.1 3. ]
 [5.7 4.1]]
(100, 2) (100,)

四、數據散點圖可視化


plt.scatter(X[:50, 0], X[:50, 1],color='red', marker='o', label='setosa')
plt.scatter(X[50:100, 0], X[50:100, 1],color='blue', marker='x', label='versicolor')
plt.xlabel('sepal length')
plt.ylabel('petal length')
plt.legend(loc='upper left')
plt.show()

 

五、利用感知機模型進行線性分類 

#這裏是對於感知機模型進行訓練
ppn = perceptron_class.Perceptron(eta=0.1, n_iter=10)
ppn.fit(X, y) #畫出分界線

#To train our perceptron algorithm, plot the misclassification error
plt.plot(range(1,len(ppn.errors_) + 1), ppn.errors_, marker='o')
plt.xlabel('Epochs')
plt.ylabel('Number of misclassifications')
plt.show()

#Visualize the decision boundaries for 2D datasets
def plot_decision_regions(X, y, classifier, resolution=0.02):
    # setup marker generator and color map
    markers = ('s', 'x', 'o', '^', 'v')
    colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan')
    cmap = ListedColormap(colors[:len(np.unique(y))])
    # plot the decision surface
    x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() + 1
    x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() + 1
    xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution), np.arange(x2_min, x2_max, resolution))
    Z = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T)
    Z = Z.reshape(xx1.shape)
    print(xx1)
    plt.contourf(xx1, xx2, Z, alpha=0.4, cmap=cmap)
    plt.xlim(xx1.min(), xx1.max())
    plt.ylim(xx2.min(), xx2.max())
    # plot class samples
    for idx, cl in enumerate(np.unique(y)):#除其中重複的元素,並按元素由大到小返回一個新的無元素重複的元組或者列表
        plt.scatter(x=X[y == cl, 0], y=X[y == cl, 1],alpha=0.8, c=cmap(idx), marker=markers[idx],label=cl)


plot_decision_regions(X, y, classifier=ppn)
plt.xlabel('sepal length [cm]')
plt.ylabel('petal length [cm]')
plt.legend(loc='upper left')
plt.show()

 分類誤差: 

   

                                                                                           

 分類結果:

六、不同學習率損失可視化對比

#Adaptive linear neurons and the convergence of learning Implementing an Adaptive Linear Neuron in Python
fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(8,4))
ada1 = perceptron_class.AdalineGD(n_iter=10, eta=0.01).fit(X,y)
ax[0].plot(range(1, len(ada1.cost_) + 1), np.log10(ada1.cost_), marker='o')
ax[0].set_xlabel('Epochs')
ax[0].set_ylabel('log(Sum-squared-error)')
ax[0].set_title('Adaline - Learning rate 0.01')
ada2 = perceptron_class.AdalineGD(n_iter=10, eta=0.0001).fit(X,y)
ax[1].plot(range(1, len(ada2.cost_) + 1), ada2.cost_, marker='o')
ax[1].set_xlabel('Epochs')
ax[1].set_ylabel('Sum-squared-error')
ax[1].set_title('Adaline - Learning rate 0.0001')
plt.show()

 

七、歸一化後分類

#standardization

X_std = np.copy(X)
X_std[:,0] = (X_std[:,0] - X_std[:,0].mean()) / X_std[:,0].std()
X_std[:,1] = (X_std[:,1] - X_std[:,1].mean()) / X_std[:,1].std()
ada = perceptron_class.AdalineGD(n_iter=15, eta=0.01)
ada.fit(X_std, y)
plot_decision_regions(X_std, y, classifier=ada)
plt.title('Adaline - Gradient Descent')
plt.xlabel('sepal length [standardized]')
plt.ylabel('petal length [standardized]')
plt.legend(loc='upper left')
# plt.show()
plt.plot(range(1, len(ada.cost_) + 1), ada.cost_, marker='o')
plt.xlabel('Epochs')
plt.ylabel('Sum-squared-error')
plt.show()

八、隨機梯度下降

#Large scale machine learning and stochastic gradient descent
ada = perceptron_class.AdalineSGD(n_iter=15, eta=0.01, random_state=1)
ada.fit(X_std, y)
plot_decision_regions(X_std, y, classifier=ada)
plt.title('Adaline - Stochastic Gradient Descent')
plt.xlabel('sepal length [standardized]')
plt.ylabel('petal length [standardized]')
plt.legend(loc='upper left')
plt.show()
plt.plot(range(1, len(ada.cost_) + 1), ada.cost_, marker='o')
plt.xlabel('Epochs')
plt.ylabel('Average Cost')
plt.show()

 

 

九、完整的代碼

import pandas as pd
import matplotlib.pyplot as plt
import numpy as np

from matplotlib.colors import ListedColormap
#from sklearn.linear_model import Perceptron
import Perceptron as perceptron_class


df = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data', header=None)
df.tail()
#抽取出前100條樣本,這正好是Setosa和Versicolor對應的樣本,我們將Versicolor對應的數據作爲類別1,Setosa對應的作爲-1。
# 對於特徵,我們抽取出sepal length和petal length兩維度特徵,然後用散點圖對數據進行可視化
#We extract the first 100 class labels that correspond to 50 Iris-Setosa and 50 Iris-Versicolor flowers.
y = df.iloc[0:100, 4].values
print(y)

y = np.where(y == 'Iris-setosa', -1, 1)#滿足條件(condition),輸出x,不滿足輸出y。
print(y)

X = df.iloc[0:100, [0, 2]].values
print(X)
print(X.shape,y.shape)#(100,2) (100,)

plt.scatter(X[:50, 0], X[:50, 1],color='red', marker='o', label='setosa')
plt.scatter(X[50:100, 0], X[50:100, 1],color='blue', marker='x', label='versicolor')
plt.xlabel('sepal length')
plt.ylabel('petal length')
plt.legend(loc='upper left')
plt.show()

#這裏是對於感知機模型進行訓練
ppn = perceptron_class.Perceptron(eta=0.1, n_iter=10)
ppn.fit(X, y) #畫出分界線

#To train our perceptron algorithm, plot the misclassification error
plt.plot(range(1,len(ppn.errors_) + 1), ppn.errors_, marker='o')
plt.xlabel('Epochs')
plt.ylabel('Number of misclassifications')
plt.show()

#Visualize the decision boundaries for 2D datasets
def plot_decision_regions(X, y, classifier, resolution=0.02):
    # setup marker generator and color map
    markers = ('s', 'x', 'o', '^', 'v')
    colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan')
    cmap = ListedColormap(colors[:len(np.unique(y))])
    # plot the decision surface
    x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() + 1
    x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() + 1
    xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution), np.arange(x2_min, x2_max, resolution))
    Z = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T)
    Z = Z.reshape(xx1.shape)
    print(xx1)
    plt.contourf(xx1, xx2, Z, alpha=0.4, cmap=cmap)
    plt.xlim(xx1.min(), xx1.max())
    plt.ylim(xx2.min(), xx2.max())
    # plot class samples
    for idx, cl in enumerate(np.unique(y)):#除其中重複的元素,並按元素由大到小返回一個新的無元素重複的元組或者列表
        plt.scatter(x=X[y == cl, 0], y=X[y == cl, 1],alpha=0.8, c=cmap(idx), marker=markers[idx],label=cl)


plot_decision_regions(X, y, classifier=ppn)
plt.xlabel('sepal length [cm]')
plt.ylabel('petal length [cm]')
plt.legend(loc='upper left')
plt.show()


#Adaptive linear neurons and the convergence of learning Implementing an Adaptive Linear Neuron in Python
fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(8,4))
ada1 = perceptron_class.AdalineGD(n_iter=10, eta=0.01).fit(X,y)
ax[0].plot(range(1, len(ada1.cost_) + 1), np.log10(ada1.cost_), marker='o')
ax[0].set_xlabel('Epochs')
ax[0].set_ylabel('log(Sum-squared-error)')
ax[0].set_title('Adaline - Learning rate 0.01')
ada2 = perceptron_class.AdalineGD(n_iter=10, eta=0.0001).fit(X,y)
ax[1].plot(range(1, len(ada2.cost_) + 1), ada2.cost_, marker='o')
ax[1].set_xlabel('Epochs')
ax[1].set_ylabel('Sum-squared-error')
ax[1].set_title('Adaline - Learning rate 0.0001')
plt.show()

#standardization

X_std = np.copy(X)
X_std[:,0] = (X_std[:,0] - X_std[:,0].mean()) / X_std[:,0].std()
X_std[:,1] = (X_std[:,1] - X_std[:,1].mean()) / X_std[:,1].std()
ada = perceptron_class.AdalineGD(n_iter=15, eta=0.01)
ada.fit(X_std, y)
plot_decision_regions(X_std, y, classifier=ada)
plt.title('Adaline - Gradient Descent')
plt.xlabel('sepal length [standardized]')
plt.ylabel('petal length [standardized]')
plt.legend(loc='upper left')
# plt.show()
plt.plot(range(1, len(ada.cost_) + 1), ada.cost_, marker='o')
plt.xlabel('Epochs')
plt.ylabel('Sum-squared-error')
plt.show()

#Large scale machine learning and stochastic gradient descent
ada = perceptron_class.AdalineSGD(n_iter=15, eta=0.01, random_state=1)
ada.fit(X_std, y)
plot_decision_regions(X_std, y, classifier=ada)
plt.title('Adaline - Stochastic Gradient Descent')
plt.xlabel('sepal length [standardized]')
plt.ylabel('petal length [standardized]')
plt.legend(loc='upper left')
plt.show()
plt.plot(range(1, len(ada.cost_) + 1), ada.cost_, marker='o')
plt.xlabel('Epochs')
plt.ylabel('Average Cost')
plt.show()

 

import numpy as np
from numpy.random import seed
class Perceptron(object):
    """Perceptron classifier.
    Parameters
    ------------
    eta : float
        Learning rate (between 0.0 and 1.0)
    n_iter : int
        Passes over the training dataset.
    Attributes
    -----------
    w_ : 1d-array
        Weights after fitting.
    errors_ : list
        Number of misclassifications (updates) in each epoch.
    """
    def __init__(self, eta=0.01, n_iter=10):
        self.eta = eta
        self.n_iter = n_iter

    def fit(self, X, y):
        """Fit training data.

        Parameters
        ----------
        X : {array-like}, shape = [n_samples, n_features]
            Training vectors, where n_samples is the number of samples and
            n_features is the number of features.
        y : array-like, shape = [n_samples]
            Target values.

        Returns
        -------
        self : object

        """
        self.w_ = np.zeros(1 + X.shape[1])
        self.errors_ = []

        for _ in range(self.n_iter):
            errors = 0
            for xi, target in zip(X, y):
                update = self.eta*(target - self.predict(xi))
                self.w_[1:] += update*xi
                self.w_[0] += update
                errors += int(update != 0.0)
            self.errors_.append(errors)
        return self

    def net_input(self, X):
        """Calculate net input"""
        return np.dot(X, self.w_[1:]) + self.w_[0]

    def predict(self, X):
        """Return class label after unit step"""
        return np.where(self.net_input(X) >= 0.0, 1, -1)


class AdalineGD(object):
    """ADAptive LInear NEuron classifier.

    Parameters
    -------------
    eta : float
        Learning rate (between 0.0 and 1.0)
    n_iter : int
        Passes over the training dataset.

    Attributes
    -------------
    w_ : 1d-array
        Weights after fitting.
    errors_ : list
        Number of misclassifications in every epoch.

    """
    def __init__(self, eta=0.01, n_iter=50):
        self.eta = eta
        self.n_iter = n_iter

    def fit(self, X, y):
        """ Fit training data.

        Parameters
        ------------
        X : {array-like5}, shape = [n_samples, n_features]
            Training vectors,
            where n_samples is the number of samples and
            n_features is the number of features.
        y : array-like, shape = [n_samples]
            Target values.

        Returns
        ------------
        self : object


        """
        self.w_ = np.zeros(1 + X.shape[1])
        self.cost_ = []

        for i in range(self.n_iter):
            output = self.net_input(X)
            errors = (y - output)
            self.w_[1:] += self.eta * X.T.dot(errors)
            self.w_[0] += self.eta * errors.sum()
            cost = (errors**2).sum() / 2.0
            self.cost_.append(cost)
        return self

    def net_input(self, X):
        """Calculate net input"""
        return np.dot(X, self.w_[1:]) + self.w_[0]

    def activation(self, X):
        """Compute linear activation"""
        return self.net_input(X)

    def predict(self, X):
        """Return class label after unit step"""
        return np.where(self.activation(X) >= 0.0, 1, -1)

class AdalineSGD(object):
    """ADAptive LInear NEuron classifier.

    Parameters
    ------------
    eta : float
        Learning rate (between 0.0 and 1.0)
    n_iter : int
        Passes over the training dataset.

    Attributes
    ------------
    w_ : 1d-array
        Weights after fitting.
    cost_ : list
        Number of misclassifications in every epoch.
    shuffle : bool (default: True)
        Shuffles training data every epoch
        if True to prevent cycles.
    random_state : int (default: None)
        Set random state for shuffling
        and initializing the weights.
    """
    def __init__(self, eta=0.01, n_iter=10, shuffle=True, random_state=None):
        self.eta = eta
        self.n_iter = n_iter
        self.w_initialized = False
        self.shuffle = shuffle
        if random_state:
            seed(random_state)

    def fit(self, X, y):
        """Fit training data.

        Parameters
        ------------
        X : {array-like}, shape = [n_samples, n_features]
            Training vector, where n_samples
            is the number of samples and
            n_features is the number of features.
        y: arrary-like, shape = [n_samples]
            Target values.

        Returns
        ------------
        self : object

        """
        self._initialize_weights(X.shape[1])
        self.cost_ = []
        for i in range(self.n_iter):
            if self.shuffle:
                X, y = self._shuffle(X, y)
            cost = []
            for xi, target in zip(X, y):
                cost.append(self._update_weights(xi, target))
            avg_cost = sum(cost)/len(y)
            self.cost_.append(avg_cost)
        return self

    def partial_fit(self, X, y):
        """Fit training data without reinitializing the weights"""
        if not self.w_initialized:
            self._initialize_weights(X.shape[1])
        if y.ravel().shape[0] > 1:
            for xi, target in zip(X, y):
                self._update_weights(xi, target)
        else:
            self._update_weights(X, y)
        return self

    def _shuffle(self, X, y):
        """Shuffle training data"""
        r = np.random.permutation(len(y))
        return X[r], y[r]

    def _initialize_weights(self, m):
        """Initialize weighs to zeros"""
        self.w_ = np.zeros(1+m)
        self.w_initialized = True

    def _update_weights(self, xi, target):
        """Apply Adaline learning rule to update the weights"""
        output = self.net_input(xi)
        error = (target - output)
        self.w_[1:] += self.eta*xi.dot(error)
        self.w_[0] += self.eta*error
        cost = 0.5 * error**2
        return cost

    def net_input(self, X):
        """Calculate net input"""
        return np.dot(X, self.w_[1:]) + self.w_[0]

    def activation(self, X):
        """Compute linear activation"""
        return self.net_input(X)

    def predict(self, X):
        """Return class label after unit step"""
        return np.where(self.activation(X) >= 0.0, 1, -1)

 十、公式推導:

 

 

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章