計算機程序的構造和解釋 練習題2.85

#lang racket
(define (square x) (* x x))
;put get實現
(define *op-table* (make-hash))

(define (put op type proc)
  (hash-set! *op-table* (list op type) proc))

(define (get op type)
  (hash-ref *op-table* (list op type) #f))

(define *type-coercion* (make-hash))

(define (put-coercion type1 type2 proc)
  (hash-set! *type-coercion* (list type1 type2) proc))

(define (get-coercion type1 type2)
  (hash-ref *type-coercion* (list type1 type2) #f))

(define (scheme-number->scheme-number n) n)
(define (complex->complex z) z)
(put-coercion 'scheme-number 'scheme-number scheme-number->scheme-number)
(put-coercion 'complex 'complex complex->complex)
(define (attach-tag type-tag contents)
  (cond ((eq? type-tag 'scheme-number) contents)
        (else (cons type-tag contents))))

(define (type-tag datum)
  (cond ((number? datum) 'scheme-number)
        ((pair? datum) (car datum))
        (else (error "Bad tagged datum -- TYPE-TAG" datum))))

(define (contents datum)
   (cond ((number? datum) datum)
         ((pair? datum) (cdr datum))
         (else (error "Bad tagged datum -- CONTENTS" datum))))
(define type-list '(scheme-number rational complex))
;判斷t1是否大於t2
(define (high-level? type1 type2 type-list)
  (cond ((null? type-list) #t)
        ((eq? (car type-list) type2) #t)
        ((eq? (car type-list) type1) #f)
        (else (high-level? type1 type2 (cdr type-list)))))
(define (raise-type t target-type)
  (if (high-level? (type-tag t) target-type type-list) t
      (raise-type (raise t) target-type)))
(define (find-high-level args)
  (define (iter high-args args)
    (cond ((null? args) high-args)
          ((high-level? high-args (type-tag (car args)) type-list) (iter high-args (cdr args)))
          (else (iter (type-tag (car args)) (cdr args)))))
  (iter 'scheme-number args))

(define (allow-drop? x)
  (cond ((eq? (type-tag x) 'scheme-number) #f)
        ((equal? (raise (project x)) x) #t)
        (else #f)))
(define (drop x)
  (if (allow-drop? x) (drop (project x)) x)) 
(define (apply-generic op . args)
  (apply-generic-list op args))
;嘗試轉換每一個目標類型,直到找到對應類型得運算
(define (apply-generic-list op args)
  (let ((high-level (find-high-level args)))
    (let ((new-args (map (lambda (x) (raise-type x high-level)) args)))
      (let ((type-tags (map type-tag new-args)))
        (let ((proc (get op type-tags)))
          (if proc
              (apply proc (map contents new-args))
              (error "No method for these types" (list op (map type-tag args)))))))))

(define (add . x) (apply-generic-list 'add x))
(define (sub x y) (apply-generic 'sub x y))
(define (mul x y) (apply-generic 'mul x y))
(define (div x y) (apply-generic 'div x y))
(define (real-part x) (apply-generic 'real-part x))
(define (imag-part x) (apply-generic 'imag-part x))
(define (magnitude x) (apply-generic 'magnitude x))
(define (angle x) (apply-generic 'angle x))
(define (exp x y) (apply-generic 'exp x y))
(define (raise x) (apply-generic 'raise x))
(define (project x) (apply-generic 'project x))
(define (equal? x y) (apply-generic 'equal? x y))
(define (install-scheme-number-package)
  (define (tag x)
    (attach-tag 'scheme-number x))
  (put 'add '(scheme-number scheme-number)
       (lambda (x y) (tag (+ x y))))
  ;添加一個三個參數得加法運算
  (put 'add '(scheme-number scheme-number scheme-number)
       (lambda (x y z) (tag (+ x y z))))
  (put 'sub '(scheme-number scheme-number)
       (lambda (x y) (tag (- x y))))
  (put 'mul '(scheme-number scheme-number)
       (lambda (x y) (tag (* x y))))
  (put 'div '(scheme-number scheme-number)
       (lambda (x y) (tag (/ x y))))
  (put 'exp '(scheme-number scheme-number)
     (lambda (x y) (tag (expt x y))))
  (put 'raise '(scheme-number)
     (lambda (x) (make-rational x 1)))
  (put 'equal? '(scheme-number scheme-number)
       (lambda (x y) (= x y)))
  (put 'make 'scheme-number
       (lambda (x) (tag x)))
  'done)
(define (make-scheme-number n)
  ((get 'make 'scheme-number) n))

(define (install-rational-package)
  (define (numer x) (car x))
  (define (denom x) (cdr x))
  (define (make-rat n d)
    (let ((g (gcd n d)))
      (cons (/ n g) (/ d g))))
  (define (add-rat x y)
    (make-rat (+ (* (numer x) (denom y))
                 (* (numer y) (denom x)))
              (* (denom x) (denom y))))
  (define (sub-rat x y)
    (make-rat (- (* (numer x) (denom y))
                 (* (numer y) (denom x)))
              (* (denom x) (denom y))))
  (define (mul-rat x y)
    (make-rat (* (numer x) (numer y))
              (* (denom x) (denom y))))
  (define (div-rat x y)
    (make-rat (* (numer x) (denom y))
              (* (denom x) (numer y))))
  (define (tag x) (attach-tag ' rational x))
  (put 'add '(rational rational)
       (lambda (x y) (tag (add-rat x y))))
  (put 'sub '(rational rational)
       (lambda (x y) (tag (sub-rat x y))))
  (put 'mul '(rational rational)
       (lambda (x y) (tag (mul-rat x y))))
  (put 'div '(rational rational)
       (lambda (x y) (tag (div-rat x y))))
  (put 'raise '(rational)
     (lambda (x) (make-complex-from-real-imag (/ (numer x) (denom x)) 0)))
  (put 'equal? '(rational rational)
       (lambda (x y) (and (= (numer x) (numer y)) (= (denom x) (denom y)))))
  (put 'project '(rational)
       (lambda (x) (round (/ (numer x) (denom x)))))
  (put 'make 'rational
       (lambda (n d) (tag (make-rat n d))))
  'done)
(define (make-rational n d)
  ((get 'make 'rational) n d))

(define (install-complex-package)
  (define (make-from-real-imag x y)
    ((get 'make-from-real-imag 'rectangular) x y))
  (define (make-from-mag-ang r a)
    ((get 'make-from-mag-ang 'polar) r a))
  (define (add-complex z1 z2)
    (make-from-real-imag (+ (real-part z1) (real-part z2))
                         (+ (imag-part z1) (imag-part z2))))
  (define (sub-complex z1 z2)
    (make-from-real-imag (- (real-part z1) (real-part z2))
                         (- (imag-part z1) (imag-part z2))))
  (define (mul-complex z1 z2)
    (make-from-mag-ang (* (magnitude z1) (magnitude z2))
                       (+ (angle z1) (angle z2))))
  (define (div-complex z1 z2)
    (make-from-mag-ang (* (magnitude z1) (magnitude z2))
                       (- (angle z1) (angle z2))))
  (define (real-part z) (apply-generic 'real-part z))
  (define (imag-part z) (apply-generic 'imag-part z))
  (define (magnitude z) (apply-generic 'magnitude z))
  (define (angle z) (apply-generic 'angle z))
  (define (tag z) (attach-tag 'complex z))
  (put 'add '(complex complex)
       (lambda (z1 z2) (tag (add-complex z1 z2))))
  (put 'sub '(complex complex)
       (lambda (z1 z2) (tag (sub-complex z1 z2))))
  (put 'mul '(complex complex)
       (lambda (z1 z2) (tag (mul-complex z1 z2))))
  (put 'div '(complex complex)
       (lambda (z1 z2) (tag (div-complex z1 z2))))
  (put 'equal? '(complex complex)
       (lambda (z1 z2) (and (= (real-part z1) (real-part z2)) (= (imag-part z1) (imag-part z2)))))
  (put 'project '(complex)
       (lambda (x) (make-rational (real-part x) 1)))
  (put 'make-from-real-imag 'complex
       (lambda (x y) (tag (make-from-real-imag x y))))
  (put 'make-from-mag-ang 'complex
       (lambda (r a) (tag (make-from-mag-ang r a))))
  (put 'real-part '(complex) real-part)
  (put 'imag-part '(complex) imag-part)
  (put 'magnitude '(complex) magnitude)
  (put 'angle '(complex) angle)
  'done)
(define (make-complex-from-real-imag x y)
  ((get 'make-from-real-imag 'complex) x y))
(define (make-complex-from-mag-ang r a)
  ((get 'make-from-mag-ang 'complex) r a))

(define (install-rectangular-package)
  (define (real-part z) (car z))
  (define (imag-part z) (cdr z))
  (define (make-from-real-imag x y) (cons x y))
  (define (magnitude z)
    (sqrt (+ (square (real-part z))
             (square (imag-part z)))))
  (define (angle z)
    (atan (imag-part z) (real-part z)))
  (define (make-from-mag-ang r a)
    (cons (* r (cos a))
          (* r (sin a))))
  (define (tag x) (attach-tag 'rectangular x))
  (put 'real-part '(rectangular) real-part)
  (put 'imag-part '(rectangular) imag-part)
  (put 'magnitude '(rectangular) magnitude)
  (put 'angle '(rectangular) angle)
  (put 'make-from-real-imag 'rectangular
       (lambda (x y) (tag (make-from-real-imag x y))))
  (put make-from-mag-ang 'rectangular
       (lambda (r a) (tag (make-from-mag-ang r a))))
  'done)

(define (install-polar-package)
  (define (magnitude z) (car z))
  (define (angle z) (cdr z))
  (define (make-from-mag-ang r a) (cons r a))
  (define (real-part z)
    (* (magnitude z) (cos (angle z))))
  (define (imag-part z)
    (* (magnitude z) (sin (angle z))))
  (define (make-from-real-imag x y)
    (cons (sqrt (+ (square x) (square y)))
          (atan y x)))
  (define (tag x) (attach-tag 'polar x))
  (put 'real-part '(polar) real-part)
  (put 'imag-part '(polar) imag-part)
  (put 'magnitude '(polar) magnitude)
  (put 'angle '(polar) angle)
  (put 'make-from-real-imag 'polar 
       (lambda (x y) (tag (make-from-real-imag x y))))
  (put make-from-mag-ang 'polar 
       (lambda (r a) (tag (make-from-mag-ang r a))))
  'done)
(install-scheme-number-package)
(install-rational-package)
(install-complex-package)
(install-rectangular-package)
(install-polar-package)


(define complex-A (make-complex-from-real-imag 6.5 0))
(define complex-B (make-complex-from-real-imag 5 0))
(drop complex-A)
(drop complex-B)
(drop (add complex-A complex-B))

運行結果

'done
'done
'done
'done
'done
'(rational 13.0 . 2.0)
5
'(rational 23.0 . 2.0)
發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章