【Spark系列3】Spark優化


數據傾斜問題

現象

1、絕大多數task執行得都非常快,但個別task執行極慢。比如,總共有1000個task,997個task都在1分鐘之內執行完了,但是剩餘兩三個task卻要一兩個小時。這種情況很常見。

2、原本能夠正常執行的Spark作業,某天突然報出OOM(內存溢出)異常,觀察異常棧,是我們寫的業務代碼造成的。這種情況比較少見。

原理

數據傾斜的原理很簡單:在進行shuffle的時候,必須將各個節點上相同的key拉取到某個節點上的一個task來進行處理,比如按照key進行聚合或join等操作。此時如果某個key對應的數據量特別大的話,就會發生數據傾斜。比如大部分key對應10條數據,但是個別key卻對應了100萬條數據,那麼大部分task可能就只會分配到10條數據,然後1秒鐘就運行完了;但是個別task可能分配到了100萬數據,要運行一兩個小時。因此,整個Spark作業的運行進度是由運行時間最長的那個task決定的。

數據傾斜的代碼定位

數據傾斜只會發生在shuffle過程中。這裏給大家羅列一些常用的並且可能會觸發shuffle操作的算子:distinct、groupByKey、reduceByKey、aggregateByKey、join、cogroup、repartition等。出現數據傾斜時,可能就是你的代碼中使用了這些算子中的某一個所導致的。

1、Web UI 可以清晰看見哪些個task運行的數據量大小和時間
2、log 日誌 可以清晰的告訴是哪一行出現問題OOM  在哪個stage出現了數據傾斜,一般在shuffle過程

3、代碼走讀,重點看join groupbykey reducebykey等關鍵代碼;

4、對數據key分佈進行分析,RDD.countByKey()

知道數據傾斜發生在哪一個stage之後,接着我們就需要根據stage劃分原理,推算出來發生傾斜的那個stage對應代碼中的哪一部分,這部分代碼中肯定會有一個shuffle類算子。精準推算stage與代碼的對應關係,需要對Spark的源碼有深入的理解,這裏我們可以介紹一個相對簡單實用的推算方法:只要看到Spark代碼中出現了一個shuffle類算子或者是Spark SQL的SQL語句中出現了會導致shuffle的語句(比如group by語句),那麼就可以判定,以那個地方爲界限劃分出了前後兩個stage

解決方法

解決方案一:使用Hive ETL預處理數據

       方案適用場景:導致數據傾斜的是Hive表。如果該Hive表中的數據本身很不均勻(比如某個key對應了100萬數據,其他key纔對應了10條數據),而且業務場景需要頻繁使用Spark對Hive表執行某個分析操作,那麼比較適合使用這種技術方案。

  方案實現思路:此時可以評估一下,是否可以通過Hive來進行數據預處理(即通過Hive ETL預先對數據按照key進行聚合,或者是預先和其他表進行join),然後在Spark作業中針對的數據源就不是原來的Hive表了,而是預處理後的Hive表。此時由於數據已經預先進行過聚合或join操作了,那麼在Spark作業中也就不需要使用原先的shuffle類算子執行這類操作了。

  方案實現原理:這種方案從根源上解決了數據傾斜,因爲徹底避免了在Spark中執行shuffle類算子,那麼肯定就不會有數據傾斜的問題了。但是這裏也要提醒一下大家,這種方式屬於治標不治本。因爲畢竟數據本身就存在分佈不均勻的問題,所以Hive ETL中進行group by或者join等shuffle操作時,還是會出現數據傾斜,導致Hive ETL的速度很慢。我們只是把數據傾斜的發生提前到了Hive ETL中,避免Spark程序發生數據傾斜而已。

  方案優點:實現起來簡單便捷,效果還非常好,完全規避掉了數據傾斜,Spark作業的性能會大幅度提升。

  方案缺點:治標不治本,Hive ETL中還是會發生數據傾斜。

  方案實踐經驗:在一些Java系統與Spark結合使用的項目中,會出現Java代碼頻繁調用Spark作業的場景,而且對Spark作業的執行性能要求很高,就比較適合使用這種方案。將數據傾斜提前到上游的Hive ETL,每天僅執行一次,只有那一次是比較慢的,而之後每次Java調用Spark作業時,執行速度都會很快,能夠提供更好的用戶體驗。

  項目實踐經驗:在美團·點評的交互式用戶行爲分析系統中使用了這種方案,該系統主要是允許用戶通過Java Web系統提交數據分析統計任務,後端通過Java提交Spark作業進行數據分析統計。要求Spark作業速度必須要快,儘量在10分鐘以內,否則速度太慢,用戶體驗會很差。所以我們將有些Spark作業的shuffle操作提前到了Hive ETL中,從而讓Spark直接使用預處理的Hive中間表,儘可能地減少Spark的shuffle操作,大幅度提升了性能,將部分作業的性能提升了6倍以上。

解決方案二:過濾少數導致傾斜的key

  方案適用場景:如果發現導致傾斜的key就少數幾個,而且對計算本身的影響並不大的話,那麼很適合使用這種方案。比如99%的key就對應10條數據,但是隻有一個key對應了100萬數據,從而導致了數據傾斜。

  方案實現思路:如果我們判斷那少數幾個數據量特別多的key,對作業的執行和計算結果不是特別重要的話,那麼幹脆就直接過濾掉那少數幾個key。比如,在Spark SQL中可以使用where子句過濾掉這些key或者在Spark Core中對RDD執行filter算子過濾掉這些key。如果需要每次作業執行時,動態判定哪些key的數據量最多然後再進行過濾,那麼可以使用sample算子對RDD進行採樣,然後計算出每個key的數量,取數據量最多的key過濾掉即可。

  方案實現原理:將導致數據傾斜的key給過濾掉之後,這些key就不會參與計算了,自然不可能產生數據傾斜。

  方案優點:實現簡單,而且效果也很好,可以完全規避掉數據傾斜。

  方案缺點:適用場景不多,大多數情況下,導致傾斜的key還是很多的,並不是只有少數幾個。

  方案實踐經驗:在項目中我們也採用過這種方案解決數據傾斜。有一次發現某一天Spark作業在運行的時候突然OOM了,追查之後發現,是Hive表中的某一個key在那天數據異常,導致數據量暴增。因此就採取每次執行前先進行採樣,計算出樣本中數據量最大的幾個key之後,直接在程序中將那些key給過濾掉。

解決方案三:提高shuffle操作的並行度(針對很多傾斜key或key不能過濾的情況)

  方案適用場景:如果我們必須要對數據傾斜迎難而上,那麼建議優先使用這種方案,因爲這是處理數據傾斜最簡單的一種方案。

  方案實現思路:在對RDD執行shuffle算子時,給shuffle算子傳入一個參數,比如reduceByKey(1000),該參數就設置了這個shuffle算子執行時shuffle read task的數量。對於Spark SQL中的shuffle類語句,比如group by、join等,需要設置一個參數,即spark.sql.shuffle.partitions,該參數代表了shuffle read task的並行度,該值默認是200,對於很多場景來說都有點過小。

  方案實現原理:增加shuffle read task的數量,可以讓原本分配給一個task的多個key分配給多個task,從而讓每個task處理比原來更少的數據。舉例來說,如果原本有5個key,每個key對應10條數據,這5個key都是分配給一個task的,那麼這個task就要處理50條數據。而增加了shuffle read task以後,每個task就分配到一個key,即每個task就處理10條數據,那麼自然每個task的執行時間都會變短了。具體原理如下圖所示。

  方案優點:實現起來比較簡單,可以有效緩解和減輕數據傾斜的影響。

  方案缺點:只是緩解了數據傾斜而已,沒有徹底根除問題,根據實踐經驗來看,其效果有限

  方案實踐經驗:該方案通常無法徹底解決數據傾斜,因爲如果出現一些極端情況,比如某個key對應的數據量有100萬,那麼無論你的task數量增加到多少,這個對應着100萬數據的key肯定還是會分配到一個task中去處理,因此註定還是會發生數據傾斜的。所以這種方案只能說是在發現數據傾斜時嘗試使用的第一種手段,嘗試去用最簡單的方法緩解數據傾斜而已,或者是和其他方案結合起來使用。

解決方案四:兩階段聚合(局部聚合+全局聚合)(適用聚合類Shuffle)

  方案適用場景:對RDD執行reduceByKey等聚合類shuffle算子或者在Spark SQL中使用group by語句進行分組聚合時,比較適用這種方案。

  方案實現思路:這個方案的核心實現思路就是進行兩階段聚合。第一次是局部聚合,先給每個key都打上一個隨機數,比如10以內的隨機數,此時原先一樣的key就變成不一樣的了,比如(hello, 1) (hello, 1) (hello, 1) (hello, 1),就會變成(1_hello, 1) (1_hello, 1) (2_hello, 1) (2_hello, 1)。接着對打上隨機數後的數據,執行reduceByKey等聚合操作,進行局部聚合,那麼局部聚合結果,就會變成了(1_hello, 2) (2_hello, 2)。然後將各個key的前綴給去掉,就會變成(hello,2)(hello,2),再次進行全局聚合操作,就可以得到最終結果了,比如(hello, 4)。

  方案實現原理:將原本相同的key通過附加隨機前綴的方式,變成多個不同的key,就可以讓原本被一個task處理的數據分散到多個task上去做局部聚合,進而解決單個task處理數據量過多的問題。接着去除掉隨機前綴,再次進行全局聚合,就可以得到最終的結果。具體原理見下圖。

  方案優點:對於聚合類的shuffle操作導致的數據傾斜,效果是非常不錯的。通常都可以解決掉數據傾斜,或者至少是大幅度緩解數據傾斜,將Spark作業的性能提升數倍以上。

  方案缺點:僅僅適用於聚合類的shuffle操作,適用範圍相對較窄。如果是join類的shuffle操作,還得用其他的解決方案。

解決方案五:將reduce join轉爲map join(使用join類Shuffle,一大一小)

  方案適用場景:在對RDD使用join類操作,或者是在Spark SQL中使用join語句時,而且join操作中的一個RDD或表的數據量比較小(比如幾百M或者一兩G),比較適用此方案。

  方案實現思路:不使用join算子進行連接操作,而使用Broadcast變量與map類算子實現join操作,進而完全規避掉shuffle類的操作,徹底避免數據傾斜的發生和出現。將較小RDD中的數據直接通過collect算子拉取到Driver端的內存中來,然後對其創建一個Broadcast變量;接着對另外一個RDD執行map類算子,在算子函數內,從Broadcast變量中獲取較小RDD的全量數據,與當前RDD的每一條數據按照連接key進行比對,如果連接key相同的話,那麼就將兩個RDD的數據用你需要的方式連接起來。

  方案實現原理:普通的join是會走shuffle過程的,而一旦shuffle,就相當於會將相同key的數據拉取到一個shuffle read task中再進行join,此時就是reduce join。但是如果一個RDD是比較小的,則可以採用廣播小RDD全量數據+map算子來實現與join同樣的效果,也就是map join,此時就不會發生shuffle操作,也就不會發生數據傾斜。具體原理如下圖所示。

  方案優點:對join操作導致的數據傾斜,效果非常好,因爲根本就不會發生shuffle,也就根本不會發生數據傾斜。

  方案缺點:適用場景較少,因爲這個方案只適用於一個大表和一個小表的情況。畢竟我們需要將小表進行廣播,此時會比較消耗內存資源,driver和每個Executor內存中都會駐留一份小RDD的全量數據。如果我們廣播出去的RDD數據比較大,比如10G以上,那麼就可能發生內存溢出了。因此並不適合兩個都是大表的情況。

解決方案六:採樣傾斜key並分拆join操作(適用join類Shuffle,兩個大表)

  方案適用場景:兩個RDD/Hive表進行join的時候,如果數據量都比較大,無法採用“解決方案五”,那麼此時可以看一下兩個RDD/Hive表中的key分佈情況。如果出現數據傾斜,是因爲其中某一個RDD/Hive表中的少數幾個key的數據量過大,而另一個RDD/Hive表中的所有key都分佈比較均勻,那麼採用這個解決方案是比較合適的。

  方案實現思路:

  1、對包含少數幾個數據量過大的key的那個RDD,通過sample算子採樣出一份樣本來,然後統計一下每個key的數量,計算出來數據量最大的是哪幾個key。
  2、然後將這幾個key對應的數據從原來的RDD中拆分出來,形成一個單獨的RDD,並給每個key都打上n以內的隨機數作爲前綴,而不會導致傾斜的大部分key形成另外一個RDD。
  3、接着將需要join的另一個RDD,也過濾出來那幾個傾斜key對應的數據並形成一個單獨的RDD,將每條數據膨脹成n條數據,這n條數據都按順序附加一個0~n的前綴,不會導致傾斜的大部分key也形成另外一個RDD。
  4、再將附加了隨機前綴的獨立RDD與另一個膨脹n倍的獨立RDD進行join,此時就可以將原先相同的key打散成n份,分散到多個task中去進行join了。
  5、而另外兩個普通的RDD就照常join即可。
  6、最後將兩次join的結果使用union算子合併起來即可,就是最終的join結果。

  方案實現原理:對於join導致的數據傾斜,如果只是某幾個key導致了傾斜,可以將少數幾個key分拆成獨立RDD,並附加隨機前綴打散成n份去進行join,此時這幾個key對應的數據就不會集中在少數幾個task上,而是分散到多個task進行join了。具體原理見下圖。

  方案優點:對於join導致的數據傾斜,如果只是某幾個key導致了傾斜,採用該方式可以用最有效的方式打散key進行join。而且只需要針對少數傾斜key對應的數據進行擴容n倍,不需要對全量數據進行擴容。避免了佔用過多內存。

  方案缺點:如果導致傾斜的key特別多的話,比如成千上萬個key都導致數據傾斜,那麼這種方式也不適合。


解決方案七:使用隨機前綴和擴容RDD進行join

  方案適用場景:如果在進行join操作時,RDD中有大量的key導致數據傾斜,那麼進行分拆key也沒什麼意義,此時就只能使用最後一種方案來解決問題了。

  方案實現思路:

  1、該方案的實現思路基本和“解決方案六”類似,首先查看RDD/Hive表中的數據分佈情況,找到那個造成數據傾斜的RDD/Hive表,比如有多個key都對應了超過1萬條數據。
  2、然後將該RDD的每條數據都打上一個n以內的隨機前綴。
  3、同時對另外一個正常的RDD進行擴容,將每條數據都擴容成n條數據,擴容出來的每條數據都依次打上一個0~n的前綴。
  4、最後將兩個處理後的RDD進行join即可。

  方案實現原理:將原先一樣的key通過附加隨機前綴變成不一樣的key,然後就可以將這些處理後的“不同key”分散到多個task中去處理,而不是讓一個task處理大量的相同key。該方案與“解決方案六”的不同之處就在於,上一種方案是儘量只對少數傾斜key對應的數據進行特殊處理,由於處理過程需要擴容RDD,因此上一種方案擴容RDD後對內存的佔用並不大;而這一種方案是針對有大量傾斜key的情況,沒法將部分key拆分出來進行單獨處理,因此只能對整個RDD進行數據擴容,對內存資源要求很高。

  方案優點:對join類型的數據傾斜基本都可以處理,而且效果也相對比較顯著,性能提升效果非常不錯。

  方案缺點:該方案更多的是緩解數據傾斜,而不是徹底避免數據傾斜。而且需要對整個RDD進行擴容,對內存資源要求很高。

  方案實踐經驗:曾經開發一個數據需求的時候,發現一個join導致了數據傾斜。優化之前,作業的執行時間大約是60分鐘左右;使用該方案優化之後,執行時間縮短到10分鐘左右,性能提升了6倍。



1、spark基於線程複用,均衡計算、均衡數據
2、key值加上隨機前綴  兩階段聚合 局部聚合+全局聚
3、別隻考慮數據量,還要考慮具體數據在具體機器上的計算能力,進行平滑拆分
4、採樣傾斜key並分拆join操作
5、去掉shuffle
6、適當提高shuffle操作的並行度
7、根據key值擴大數據規模 膨脹數據
8、reducebykey、join在shuffle之前解決掉,利用廣播
9、不要小看spark的數據結構,使用好的數據結構和序列化,編碼解碼方式,減少數據總量,節省30%的磁盤、內存,要知道GC是spark的死穴
10、將數據放在Tachyon中帶來更好的數據本地性,減少網絡的Shuffle
11、複用RDD,最小化job的工作,極大的緩解數據傾斜。已有RDD複用可能 30% 80% 100%


Shuffle調優

以下是Shffule過程中的一些主要參數,這裏詳細講解了各個參數的功能、默認值以及基於實踐經驗給出的調優建議。

spark.shuffle.file.buffer

  1、默認值:32k
  參數說明:該參數用於設置shuffle write task的BufferedOutputStream的buffer緩衝大小。將數據寫到磁盤文件之前,會先寫入buffer緩衝中,待緩衝寫滿之後,纔會溢寫到磁盤。
  調優建議:如果作業可用的內存資源較爲充足的話,可以適當增加這個參數的大小(比如64k),從而減少shuffle write過程中溢寫磁盤文件的次數,也就可以減少磁盤IO次數,進而提升性能。在實踐中發現,合理調節該參數,性能會有1%~5%的提升。

spark.reducer.maxSizeInFlight

  默認值:48m
  參數說明:該參數用於設置shuffle read task的buffer緩衝大小,而這個buffer緩衝決定了每次能夠拉取多少數據。
  調優建議:如果作業可用的內存資源較爲充足的話,可以適當增加這個參數的大小(比如96m),從而減少拉取數據的次數,也就可以減少網絡傳輸的次數,進而提升性能。在實踐中發現,合理調節該參數,性能會有1%~5%的提升。

spark.shuffle.io.maxRetries

  默認值:3
  參數說明:shuffle read task從shuffle write task所在節點拉取屬於自己的數據時,如果因爲網絡異常導致拉取失敗,是會自動進行重試的。該參數就代表了可以重試的最大次數。如果在指定次數之內拉取還是沒有成功,就可能會導致作業執行失敗。
  調優建議:對於那些包含了特別耗時的shuffle操作的作業,建議增加重試最大次數(比如60次),以避免由於JVM的full gc或者網絡不穩定等因素導致的數據拉取失敗。在實踐中發現,對於針對超大數據量(數十億~上百億)的shuffle過程,調節該參數可以大幅度提升穩定性

spark.shuffle.io.retryWait

  默認值:5s
  參數說明:具體解釋同上,該參數代表了每次重試拉取數據的等待間隔,默認是5s。
  調優建議:建議加大間隔時長(比如60s),以增加shuffle操作的穩定性。

spark.shuffle.memoryFraction

  默認值:0.2
  參數說明:該參數代表了Executor內存中,分配給shuffle read task進行聚合操作的內存比例,默認是20%。
  調優建議:在資源參數調優中講解過這個參數。如果內存充足,而且很少使用持久化操作,建議調高這個比例,給shuffle read的聚合操作更多內存,以避免由於內存不足導致聚合過程中頻繁讀寫磁盤。在實踐中發現,合理調節該參數可以將性能提升10%左右。

spark.shuffle.manager

  默認值:sort
  參數說明:該參數用於設置ShuffleManager的類型。Spark 1.5以後,有三個可選項:hash、sort和tungsten-sort。HashShuffleManager是Spark 1.2以前的默認選項,但是Spark 1.2以及之後的版本默認都是SortShuffleManager了。tungsten-sort與sort類似,但是使用了tungsten計劃中的堆外內存管理機制,內存使用效率更高。
  調優建議:由於SortShuffleManager默認會對數據進行排序,因此如果你的業務邏輯中需要該排序機制的話,則使用默認的SortShuffleManager就可以;而如果你的業務邏輯不需要對數據進行排序,那麼建議參考後面的幾個參數調優,通過bypass機制或優化的HashShuffleManager來避免排序操作,同時提供較好的磁盤讀寫性能。這裏要注意的是,tungsten-sort要慎用,因爲之前發現了一些相應的bug。

spark.shuffle.sort.bypassMergeThreshold

  默認值:200
  參數說明:當ShuffleManager爲SortShuffleManager時,如果shuffle read task的數量小於這個閾值(默認是200),則shuffle write過程中不會進行排序操作,而是直接按照未經優化的HashShuffleManager的方式去寫數據,但是最後會將每個task產生的所有臨時磁盤文件都合併成一個文件,並會創建單獨的索引文件。
  調優建議:當你使用SortShuffleManager時,如果的確不需要排序操作,那麼建議將這個參數調大一些,大於shuffle read task的數量。那麼此時就會自動啓用bypass機制,map-side就不會進行排序了,減少了排序的性能開銷。但是這種方式下,依然會產生大量的磁盤文件,因此shuffle write性能有待提高。

spark.shuffle.consolidateFiles

  默認值:false
  參數說明:如果使用HashShuffleManager,該參數有效。如果設置爲true,那麼就會開啓consolidate機制,會大幅度合併shuffle write的輸出文件,對於shuffle read task數量特別多的情況下,這種方法可以極大地減少磁盤IO開銷,提升性能。
  調優建議:如果的確不需要SortShuffleManager的排序機制,那麼除了使用bypass機制,還可以嘗試將spark.shffle.manager參數手動指定爲hash,使用HashShuffleManager,同時開啓consolidate機制。在實踐中嘗試過,發現其性能比開啓了bypass機制的SortShuffleManager要高出10%~30%。



Spark性能優化:數據傾斜調優》https://www.iteblog.com/archives/1671.html

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章