使用單片機讀取外部電壓ADC阻抗匹配的問題

  單片機的基準電壓一般爲3.3V,如果外部信號超過了AD測量範圍,可以採用電阻分壓的方法,但是要注意阻抗匹配問題。比如,SMT32的模數輸入阻抗約爲10K,如果外接的分壓電阻無法遠小於該阻值,則會因爲信號源輸出阻抗較大,AD的輸入阻抗較小,從而輸入阻抗對信號源信號的電壓造成分壓,最終導致電壓讀取誤差較大。

  因此對於使用單片機讀取外部信號電壓,外接分壓電阻必須選用較小的電阻,或者在對功耗有要求的情況下,可選用大阻值的電壓分壓後,使用電壓跟隨器進行阻抗匹配(電壓跟隨器輸入阻抗可達到幾兆歐姆,輸出阻抗爲幾歐姆甚至更小)。如果信號源的輸出阻抗較大,可採用電壓跟隨器匹配後再接電阻分壓。

對於外置的ADC芯片,在選型時,要留意其類型(SAR型、開關電容型、FLASH型、雙積分型、Sigma-Delta型),不同類型的ADC芯片輸入阻抗不同——

1、SAR型:這種ADC內阻都很大,一般500K以上。即使阻抗小的ADC,阻抗也是固定的。所以即使只要被測源內阻穩定,只是相當於電阻分壓,可以被校正;

2、開關電容型:如TLC2543之類,其要求很低的輸入阻抗用於對內部採樣電容快速充電。這時最好有低阻源,否則會引起誤差。實在不行,可以外部並聯一很大的電容,每次被取樣後,大電容的電壓下降不多。因此並聯外部大電容後,開關電容輸入可以等效爲一個純阻性阻抗,可以被校正;

3、FLASH型(直接比較型):大多高速ADC都是直接比較型,也稱閃速型(FLASH),一般都是低阻抗的。要求低阻源。對外表現純阻性,可以和運放直接連接;

4、雙積分型:這種類型大多輸入阻抗極高,幾乎不用考慮阻抗問題;

5、Sigma-Delta型:這是目前精度最高的ADC類型,需要重點注意如下問題:

a.  測量範圍問題:SigmaDelta型ADC屬於開關電容型輸入,必須有低阻源。所以爲了簡化外部設計,內部大多集成有緩衝器。緩衝器打開,則對外呈現高阻,使用方便。但要注意了,緩衝器實際是個運放。那麼必然有上下軌的限制。大多數緩衝器都是下軌50mV,上軌AVCC-1.5V。在這種應用中,共莫輸入範圍大大的縮小,而且不能到測0V。一定要特別小心!一般用在電橋測量中,因爲共模範圍都在1/2VCC附近。不必過分擔心緩衝器的零票,通過內部校零寄存器很容易校正的;

b.  輸入端有RC濾波器的問題:SigmaDelta型ADC屬於開關電容型輸入,在低阻源上工作良好。但有時候爲了抑制共模或抑制乃奎斯特頻率外的信號,需要在輸入端加RC濾波器,一般DATASHEET上會給一張最大允許輸入阻抗和C和Gain的關係表。這時很奇怪的一個特性是,C越大,則最大輸入阻抗必須隨之減小!剛開始可能很多人不解,其實只要想一下電容充電特性久很容易明白的。還有一個折衷的辦法是,把C取很大,遠大於幾百萬倍的採樣電容Cs(一般4~20PF),則輸入等效純電阻,分壓誤差可以用GainOffset寄存器校正。

c.  運放千萬不能和SigmaDelta型ADC直連!前面說過,開關電容輸入電路電路週期用採樣電容從輸入端採樣,每次和運放並聯的時候,會呈現低阻,和運放輸出阻抗分壓,造成電壓下降,負反饋立刻開始校正,但運放壓擺率(SlewRate)有限,不能立刻響應。於是造成瞬間電壓跌落,取樣接近完畢時,相當於高阻,運放輸出電壓上升,但壓擺率使運放來不及校正,結果是過沖。而這時正是最關鍵的採樣結束時刻。所以,運放和SD型ADC連接,必須通過一個電阻和電容連接(接成低通)。而RC的關係又必須服從datasheet所述規則。

d.  差分輸入和雙極性的問題:SD型ADC都可以差分輸入,都支持雙極性輸入。但這裏的雙極性並不是指可以測負壓,而是Vi+ Vi-兩腳之間的電壓。假設Vi-接AGND,那麼負壓測量範圍不會超過-0.3V。正確的接法是Vi+ Vi- 共模都在-0.3~VCC之間差分輸入。一個典型的例子是電橋。另一個例子是Vi-接Vref,Vi+對Vi-的電壓允許雙極性輸入

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章