操作系統: 用戶態和內核態

用戶態和內核態:

內核態:cpu可以訪問內存的所有數據,包括外圍設備,例如硬盤,網卡,cpu也可以將自己從一個程序切換到另一個程序。

用戶態:只能受限的訪問內存,且不允許訪問外圍設備,佔用cpu的能力被剝奪,cpu資源可以被其他程序獲取。

爲什麼要有用戶態和內核態?

由於需要限制不同的程序之間的訪問能力, 防止他們獲取別的程序的內存數據, 或者獲取外圍設備的數據, 併發送到網絡, CPU劃分出兩個權限等級 – 用戶態和內核態。

用戶態與內核態的切換:

所有用戶程序都是運行在用戶態的, 但是有時候程序確實需要做一些內核態的事情, 例如從硬盤讀取數據, 或者從鍵盤獲取輸入等. 而唯一可以做這些事情的就是操作系統, 所以此時程序就需要先操作系統請求以程序的名義來執行這些操作.

這時需要一個這樣的機制: 用戶態程序切換到內核態, 但是不能控制在內核態中執行的指令

這種機制叫系統調用, 在CPU中的實現稱之爲陷阱指令(Trap Instruction)

他們的工作流程如下:

  1. 用戶態程序將一些數據值放在寄存器中, 或者使用參數創建一個堆棧(stack frame), 以此表明需要操作系統提供的服務.
  2. 用戶態程序執行陷阱指令
  3. CPU切換到內核態, 並跳到位於內存指定位置的指令, 這些指令是操作系統的一部分, 他們具有內存保護, 不可被用戶態程序訪問
  4. 這些指令稱之爲陷阱(trap)或者系統調用處理器(system call handler). 他們會讀取程序放入內存的數據參數, 並執行程序請求的服務
  5. 系統調用完成後, 操作系統會重置CPU爲用戶態並返回系統調用的結果

當一個任務(進程)執行系統調用而陷入內核代碼中執行時,我們就稱進程處於內核運行態(或簡稱爲內核態)。此時處理器處於特權級最高的(0級)內核代碼中執行。當進程處於內核態時,執行的內核代碼會使用當前進程的內核棧。每個進程都有自己的內核棧。當進程在執行用戶自己的代碼時,則稱其處於用戶運行態(用戶態)。即此時處理器在特權級最低的(3級)用戶代碼中運行。當正在執行用戶程序而突然被中斷程序中斷時,此時用戶程序也可以象徵性地稱爲處於進程的內核態。因爲中斷處理程序將使用當前進程的內核棧。這與處於內核態的進程的狀態有些類似。

內核態與用戶態是操作系統的兩種運行級別,跟intel cpu沒有必然的聯繫, intel cpu提供Ring0-Ring3三種級別的運行模式,Ring0級別最高,Ring3最低。Linux使用了Ring3級別運行用戶態,Ring0作爲 內核態,沒有使用Ring1和Ring2。Ring3狀態不能訪問Ring0的地址空間,包括代碼和數據。Linux進程的4GB地址空間,3G-4G部 分大家是共享的,是內核態的地址空間,這裏存放在整個內核的代碼和所有的內核模塊,以及內核所維護的數據。用戶運行一個程序,該程序所創建的進程開始是運 行在用戶態的,如果要執行文件操作,網絡數據發送等操作,必須通過write,send等系統調用,這些系統調用會調用內核中的代碼來完成操作,這時,必 須切換到Ring0,然後進入3GB-4GB中的內核地址空間去執行這些代碼完成操作,完成後,切換回Ring3,回到用戶態。這樣,用戶態的程序就不能 隨意操作內核地址空間,具有一定的安全保護作用。

至於說保護模式,是說通過內存頁表操作等機制,保證進程間的地址空間不會互相沖突,一個進程的操作不會修改另一個進程的地址空間中的數據。





1. 用戶態和內核態的概念區別

究竟什麼是用戶態,什麼是內核態,這兩個基本概念以前一直理解得不是很清楚,根本原因個人覺得是在於因爲大部分時候我們在寫程序時關注的重點和着眼的角度放在了實現的功能和代碼的邏輯性上,先看一個例子:
1)例子

	void testfork(){
		if(0 = = fork()){
			printf(“create new process success!\n”);
		}
		printf(“testfork ok\n”);
	}

這段代碼很簡單,從功能的角度來看,就是實際執行了一個fork(),生成一個新的進程,從邏輯的角度看,就是判斷了如果fork()返回的是0則打印相關語句,然後函數最後再打印一句表示執行完整個testfork()函數。代碼的執行邏輯和功能上看就是如此簡單,一共四行代碼,從上到下一句一句執行而已,完全看不出來哪裏有體現出用戶態和進程態的概念。

如果說前面兩種是靜態觀察的角度看的話,我們還可以從動態的角度來看這段代碼,即它被轉換成CPU執行的指令後加載執行的過程,這時這段程序就是一個動態執行的指令序列。而究竟加載了哪些代碼,如何加載就是和操作系統密切相關了。

2)特權級
熟悉Unix/Linux系統的人都知道,fork的工作實際上是以系統調用的方式完成相應功能的,具體的工作是由sys_fork負責實施。其實無論是不是Unix或者Linux,對於任何操作系統來說,創建一個新的進程都是屬於核心功能,因爲它要做很多底層細緻地工作,消耗系統的物理資源,比如分配物理內存,從父進程拷貝相關信息,拷貝設置頁目錄頁表等等,這些顯然不能隨便讓哪個程序就能去做,於是就自然引出特權級別的概念,顯然,最關鍵性的權力必須由高特權級的程序來執行,這樣纔可以做到集中管理,減少有限資源的訪問和使用衝突。
特權級顯然是非常有效的管理和控制程序執行的手段,因此在硬件上對特權級做了很多支持,就Intel x86架構的CPU來說一共有0~3四個特權級,0級最高,3級最低,硬件上在執行每條指令時都會對指令所具有的特權級做相應的檢查,相關的概念有CPL、DPL和RPL,這裏不再過多闡述。硬件已經提供了一套特權級使用的相關機制,軟件自然就是好好利用的問題,這屬於操作系統要做的事情,對於Unix/Linux來說,只使用了0級特權級和3級特權級。也就是說在Unix/Linux系統中,一條工作在0級特權級的指令具有了CPU能提供的最高權力,而一條工作在3級特權級的指令具有CPU提供的最低或者說最基本權力。

3)用戶態和內核態:
現在我們從特權級的調度來理解用戶態和內核態就比較好理解了,當程序運行在3級特權級上時,就可以稱之爲運行在用戶態,因爲這是最低特權級,是普通的用戶進程運行的特權級,大部分用戶直接面對的程序都是運行在用戶態;反之,當程序運行在0級特權級上時,就可以稱之爲運行在內核態。

雖然用戶態下和內核態下工作的程序有很多差別,但最重要的差別就在於特權級的不同,即權力的不同。運行在用戶態下的程序不能直接訪問操作系統內核數據結構和程序,比如上面例子中的testfork()就不能直接調用sys_fork(),因爲前者是工作在用戶態,屬於用戶態程序,而sys_fork()是工作在內核態,屬於內核態程序。

當我們在系統中執行一個程序時,大部分時間是運行在用戶態下的,在其需要操作系統幫助完成某些它沒有權力和能力完成的工作時就會切換到內核態,比如testfork()最初運行在用戶態進程下,當它調用fork()最終觸發sys_fork()的執行時,就切換到了內核態。

2. 用戶態和內核態的轉換

1)用戶態切換到內核態的3種方式

a. 系統調用:
這是用戶態進程主動要求切換到內核態的一種方式,用戶態進程通過系統調用申請使用操作系統提供的服務程序完成工作,比如前例中fork()實際上就是執行了一個創建新進程的系統調用。而系統調用的機制其核心還是使用了操作系統爲用戶特別開放的一箇中斷來實現,例如Linux的int 80h中斷。

b. 異常
當CPU在執行運行在用戶態下的程序時,發生了某些事先不可知的異常,這時會觸發由當前運行進程切換到處理此異常的內核相關程序中,也就轉到了內核態,比如缺頁異常。

c. 外圍設備的中斷
當外圍設備完成用戶請求的操作後,會向CPU發出相應的中斷信號,這時CPU會暫停執行下一條即將要執行的指令轉而去執行與中斷信號對應的處理程序,如果先前執行的指令是用戶態下的程序,那麼這個轉換的過程自然也就發生了由用戶態到內核態的切換。比如硬盤讀寫操作完成,系統會切換到硬盤讀寫的中斷處理程序中執行後續操作等。

這3種方式是系統在運行時由用戶態轉到內核態的最主要方式,其中系統調用可以認爲是用戶進程主動發起的,異常和外圍設備中斷則是被動的。

2)具體的切換操作
從觸發方式上看,可以認爲存在前述3種不同的類型,但是從最終實際完成由用戶態到內核態的切換操作上來說,涉及的關鍵步驟是完全一致的,沒有任何區別,都相當於執行了一箇中斷響應的過程,因爲系統調用實際上最終是中斷機制實現的,而異常和中斷的處理機制基本上也是一致的,關於它們的具體區別這裏不再贅述。關於中斷處理機制的細節和步驟這裏也不做過多分析,涉及到由用戶態切換到內核態的步驟主要包括:

  1. 從當前進程的描述符中提取其內核棧的ss0及esp0信息。
  2. 使用ss0和esp0指向的內核棧將當前進程的cs,eip,eflags,ss,esp信息保存起來,這個
    過程也完成了由用戶棧到內核棧的切換過程,同時保存了被暫停執行的程序的下一
    條指令。
  3. 將先前由中斷向量檢索得到的中斷處理程序的cs,eip信息裝入相應的寄存器,開始執行中斷處理程序,這時就轉到了內核態的程序執行了。

END!!!

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章