Android 內存優化,如何避免OOM

一、 Android的內存機制

Android的程序由Java語言編寫,所以Android的內存管理與Java的內存管理相似。程序員通過new爲對象分配內存,所有對象在java 堆內分配空間;然而對象的釋放是由垃圾回收器來完成的。C/C++中的內存機制是“誰污染,誰治理”,java的就比較人性化了,給我們請了一個專門的清 潔工(GC)。

那麼GC怎麼能夠確認某一個對象是不是已經被廢棄了呢?Java採用了有向圖的原理。Java將引用關係考慮爲圖的有向邊,有向邊從引用者指向引用對象。 線程對象可以作爲有向圖的起始頂點,該圖就是從起始頂點開始的一棵樹,根頂點可以到達的對象都是有效對象,GC不會回收這些對象。如果某個對象 (連通子圖)與這個根頂點不可達(注意,該圖爲有向圖),那麼我們認爲這個(這些)對象不再被引用,可以被GC回收。

二、Android的內存溢出

Android的內存溢出是如何發生的?

Android的虛擬機是基於寄存器的Dalvik,它的最大堆大小一般是16M,有的機器爲24M。因此我們所能利用的內存空間是有限的。如果我們的內存佔用超過了一定的水平就會出現OutOfMemory的錯誤。

爲什麼會出現內存不夠用的情況呢?我想原因主要有兩個:

由於我們程序的失誤,長期保持某些資源(如Context)的引用,造成內存泄露,資源造成得不到釋放。
保存了多個耗用內存過大的對象(如Bitmap),造成內存超出限制。

三、萬惡的static

static是Java中的一個關鍵字,當用它來修飾成員變量時,那麼該變量就屬於該類,而不是該類的實例。所以用static修飾的變量,它的生命週期是很長的,如果用它來引用一些資源耗費過多的實例(Context的情況最多),這時就要謹慎對待了。

public class ClassName {
    private static Context mContext;
    //省略}

以上的代碼是很危險的,如果將Activity賦值到麼mContext的話。那麼即使該Activity已經onDestroy,但是由於仍有對象保存它的引用,因此該Activity依然不會被釋放。

我們舉Android文檔中的一個例子。

private static Drawable sBackground;@Overrideprotected void onCreate(Bundle state) {
    super.onCreate(state);

    TextView label = new TextView(this);
    label.setText(“Leaks are bad”);

    if (sBackground == null) {
        sBackground = getDrawable(R.drawable.large_bitmap);
    }
    label.setBackgroundDrawable(sBackground);

    setContentView(label);}

sBackground, 是一個靜態的變量,但是我們發現,我們並沒有顯式的保存Contex的引用,但是,當Drawable與View連接之後,Drawable就將View 設置爲一個回調,由於View中是包含Context的引用的,所以,實際上我們依然保存了Context的引用。這個引用鏈如下:

Drawable->TextView->Context

所以,最終該Context也沒有得到釋放,發生了內存泄露。

如何纔能有效的避免這種引用的發生呢?

第一,應該儘量避免static成員變量引用資源耗費過多的實例,比如Context。

第二、Context儘量使用Application Context,因爲Application的Context的生命週期比較長,引用它不會出現內存泄露的問題。

第三、使用WeakReference代替強引用。比如可以使用WeakReference mContextRef;

該部分的詳細內容也可以參考Android文檔中Article部分。

四、都是線程惹的禍

線程也是造成內存泄露的一個重要的源頭。線程產生內存泄露的主要原因在於線程生命週期的不可控。我們來考慮下面一段代碼。

public class MyActivity extends Activity {
    @Override
    public void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        setContentView(R.layout.main);
        new MyThread().start();
    }

    private class MyThread extends Thread{
        @Override
        public void run() {
            super.run();
            //do somthing
        }
    }}

這段代碼很平常也很簡單,是我們經常使用的形式。我們思考一個問題:假設MyThread的run函數是一個很費時的操作,當我們開啓該線程後,將設備的 橫屏變爲了豎屏,一般情況下當屏幕轉換時會重新創建Activity,按照我們的想法,老的Activity應該會被銷燬纔對,然而事實上並非如此。

由於我們的線程是Activity的內部類,所以MyThread中保存了Activity的一個引用,當MyThread的run函數沒有結束時,MyThread是不會被銷燬的,因此它所引用的老的Activity也不會被銷燬,因此就出現了內存泄露的問題。

有些人喜歡用Android提供的AsyncTask,但事實上AsyncTask的問題更加嚴重,Thread只有在run函數不結束時纔出現這種內存 泄露問題,然而AsyncTask內部的實現機制是運用了ThreadPoolExcutor,該類產生的Thread對象的生命週期是不確定的,是應用 程序無法控制的,因此如果AsyncTask作爲Activity的內部類,就更容易出現內存泄露的問題。

這種線程導致的內存泄露問題應該如何解決呢?

第一、將線程的內部類,改爲靜態內部類。

第二、在線程內部採用弱引用保存Context引用。

解決的模型如下:

public abstract class WeakAsyncTaskProgress, Result, WeakTarget> extendsAsyncTaskProgress, Result> {
    protected WeakReference mTarget;

    public WeakAsyncTask(WeakTarget target) {
        mTarget = new WeakReference(target);
    }

    @Override
    protected final void onPreExecute() {
        final WeakTarget target = mTarget.get();
        if (target != null) {
            this.onPreExecute(target);
        }
    }

    @Override
    protected final Result doInBackground(Params… params) {
        final WeakTarget target = mTarget.get();
        if (target != null) {
            return this.doInBackground(target, params);
        } else {
            return null;
        }
    }

    @Override
    protected final void onPostExecute(Result result) {
        final WeakTarget target = mTarget.get();
        if (target != null) {
            this.onPostExecute(target, result);
        }
    }

    protected void onPreExecute(WeakTarget target) {
        // No default action
    }

    protected abstract Result doInBackground(WeakTarget target, Params… params);

    protected void onPostExecute(WeakTarget target, Result result) {
        // No default action
    }}

事實上,線程的問題並不僅僅在於內存泄露,還會帶來一些災難性的問題。由於本文討論的是內存問題,所以在此不做討論。

由於51cto不讓我一次傳完,說我的字數太多了,所以分開傳了。

五、超級大胖子Bitmap

可以說出現OutOfMemory問題的絕大多數人,都是因爲Bitmap的問題。因爲Bitmap佔用的內存實在是太多了,它是一個“超級大胖子”,特別是分辨率大的圖片,如果要顯示多張那問題就更顯著了。

如何解決Bitmap帶給我們的內存問題?

第一、及時的銷燬。

雖然,系統能夠確認Bitmap分配的內存最終會被銷燬,但是由於它佔用的內存過多,所以很可能會超過java堆的限制。因此,在用完Bitmap時,要 及時的recycle掉。recycle並不能確定立即就會將Bitmap釋放掉,但是會給虛擬機一個暗示:“該圖片可以釋放了”。

第二、設置一定的採樣率。

有時候,我們要顯示的區域很小,沒有必要將整個圖片都加載出來,而只需要記載一個縮小過的圖片,這時候可以設置一定的採樣率,那麼就可以大大減小佔用的內存。如下面的代碼:

private ImageView preview;BitmapFactory.Options options = new BitmapFactory.Options();options.inSampleSize = 2; //圖片寬高都爲原來的二分之一,即圖片爲原來的四分之一Bitmap bitmap = BitmapFactory.decodeStream(cr.openInputStream(uri), null, options);preview.setImageBitmap(bitmap);

第三、巧妙的運用軟引用(SoftRefrence)

有些時候,我們使用Bitmap後沒有保留對它的引用,因此就無法調用Recycle函數。這時候巧妙的運用軟引用,可以使Bitmap在內存快不足時得到有效的釋放。如下例:

private class MyAdapter extends BaseAdapter {

    private ArrayList> mBitmapRefs = new ArrayList>();
    private ArrayList mValues;
    private Context mContext;
    private LayoutInflater mInflater;

    MyAdapter(Context context, ArrayList values) {
        mContext = context;
        mValues = values;
        mInflater = (LayoutInflater) context.getSystemService(Context.LAYOUT_INFLATER_SERVICE);
    }
    public int getCount() {
        return mValues.size();
    }

    public Object getItem(int i) {
        return mValues.get(i);
    }

    public long getItemId(int i) {
        return i;
    }

    public View getView(int i, View view, ViewGroup viewGroup) {
        View newView = null;
        if(view != null) {
            newView = view;
        } else {
            newView =(View)mInflater.inflate(R.layout.p_w_picpath_view, false);
        }

        Bitmap bitmap = BitmapFactory.decodeFile(mValues.get(i).fileName);
        mBitmapRefs.add(new SoftReference(bitmap));     //此處加入ArrayList
        ((ImageView)newView).setImageBitmap(bitmap);

        return newView;
    }}

六、行蹤詭異的Cursor

Cursor是Android查詢數據後得到的一個管理數據集合的類,正常情況下,如果查詢得到的數據量較小時不會有內存問題,而且虛擬機能夠保證Cusor最終會被釋放掉。

然而如果Cursor的數據量特表大,特別是如果裏面有Blob信息時,應該保證Cursor佔用的內存被及時的釋放掉,而不是等待GC來處理。並且 Android明顯是傾向於編程者手動的將Cursor close掉,因爲在源代碼中我們發現,如果等到垃圾回收器來回收時,會給用戶以錯誤提示。

所以我們使用Cursor的方式一般如下:

Cursor cursor = null;try {
    cursor = mContext.getContentResolver().query(uri,null, null,null,null);
    if(cursor != null) {
        cursor.moveToFirst();
        //do something
    }} catch (Exception e) {
    e.printStackTrace();} finally {
    if (cursor != null) {
        cursor.close();
    }}

有一種情況下,我們不能直接將Cursor關閉掉,這就是在CursorAdapter中應用的情況,但是注意,CursorAdapter在Acivity結束時並沒有自動的將Cursor關閉掉,因此,你需要在onDestroy函數中,手動關閉。

@Overrideprotected void onDestroy() {
    if (mAdapter != null && mAdapter.getCurosr() != null) {
        mAdapter.getCursor().close();
    }
    super.onDestroy();}

CursorAdapter中的changeCursor函數,會將原來的Cursor釋放掉,並替換爲新的Cursor,所以你不用擔心原來的Cursor沒有被關閉。
你可能會想到使用Activity的managedQuery來生成Cursor,這樣Cursor就會與Acitivity的生命週期一致了,多麼完美的解決方法!然而事實上managedQuery也有很大的侷限性。
managedQuery生成的Cursor必須確保不會被替換,因爲可能很多程序事實上查詢條件都是不確定的,因此我們經常會用新查詢的Cursor來替換掉原先的Cursor。因此這種方法適用範圍也是很小。

七、其它要說的。

其實,要減小內存的使用,其實還有很多方法和要求。比如不要使用整張整張的圖,儘量使用9path圖片。Adapter要使用convertView等等,好多細節都可以節省內存。這些都需要我們去挖掘,誰叫Android的內存不給力來着。


發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章