C& STM32F4 | 簡單還原八分音符醬小遊戲

背景

之前做的微處理系統期末項目,用簡單的OLED屏幕和麥克風,開發板簡單復刻八分音符醬遊戲。
主要運用了GPIO(管控麥克風和OLED的輸入輸出), DMA,和ADC(存儲從麥克風獲取的音量數據), TIMER(控制遊戲運行和硬體工作進程), I²C(管理協調硬體工作)等的知識。

涉及硬件:NUCLEO-F411RE開發板, 麪包板, OLED顯示屏,麥克風
涉及軟件/ 開發環境:STM32CubeMX,Eclipse (C語言實現)

過程

1.生成項目

用STM32 CubeMx (有空補個環境搭建步驟) 開啓各個功能硬件,生成項目。

  • 打開 I²C在這裏插入圖片描述

  • 打開DMA在這裏插入圖片描述在這裏插入圖片描述
    在這裏插入圖片描述
    在這裏插入圖片描述

  • 打開TIM3
    在這裏插入圖片描述
    在這裏插入圖片描述

  • 設置Clock
    在這裏插入圖片描述

2. 連接線路

在這裏插入圖片描述

3.代碼

首先初始化GPIO, DMA, ADC, TIMER, I²C等硬體;
然後指定數據存放數組;
引入SSD1306 的OLED顯示方式並初始化OLED屏幕;
當執行完一次ADC掃描而中斷時,執行中斷回調函數,更新遊戲訊息:
首先對此次掃描得到的adcValue(麥克風讀取的音量值數組)進行提取與處理;
然後更新遊戲地圖和關卡數等遊戲界面顯示內容;
接著轉化提取的音量數據為角色位置;
完成角色位置更新後及時判斷當前角色狀態,如是否因觸碰障礙物或墜落而終止遊戲,是否成功跳至新的臺階,是否完成當前關卡而升級至下一關卡或遊戲勝利;
最後整合前面的信息並顯示於OLED上。

在這裏插入圖片描述

/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file           : main.c
  * @brief          : Main program body
  ******************************************************************************
  * @attention
  *
  * <h2><center>&copy; Copyright (c) 2019 STMicroelectronics.
  * All rights reserved.</center></h2>
  *
  * This software component is licensed by ST under BSD 3-Clause license,
  * the "License"; You may not use this file except in compliance with the
  * License. You may obtain a copy of the License at:
  *                        opensource.org/licenses/BSD-3-Clause
  *
  ******************************************************************************
  */
/* USER CODE END Header */

/* Includes ------------------------------------------------------------------*/
#include "main.h"

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
//////////////////////////////////////
#include "ssd1306.h"

/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */

/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */

/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */

/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/
ADC_HandleTypeDef hadc1;
DMA_HandleTypeDef hdma_adc1;

I2C_HandleTypeDef hi2c2;

TIM_HandleTypeDef htim3;

UART_HandleTypeDef huart2;
DMA_HandleTypeDef hdma_usart2_tx;

/* USER CODE BEGIN PV */

/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_DMA_Init(void);
static void MX_ADC1_Init(void);
static void MX_TIM3_Init(void);
static void MX_USART2_UART_Init(void);
static void MX_I2C2_Init(void);
/* USER CODE BEGIN PFP */

/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
//////////////////////////////////
uint16_t adcValues[128]={0};//store volume
uint8_t X=0;
int preV;
int floor=1;
int gameover=0;
int round=1;

/* USER CODE END 0 */

/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{
  /* USER CODE BEGIN 1 */

  /* USER CODE END 1 */

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_DMA_Init();
  MX_ADC1_Init();
  MX_TIM3_Init();
  MX_USART2_UART_Init();
  MX_I2C2_Init();
  /* USER CODE BEGIN 2 */
  //////////////////////////////////////////
  HAL_TIM_Base_Start(&htim3);
  HAL_ADC_Start_DMA(&hadc1,adcValues,128);

  SSD1306_Init();
  SSD1306_Fill(SSD1306_COLOR_WHITE);
  SSD1306_UpdateScreen();

  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */
  }
  /* USER CODE END 3 */
}

/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};

  /** Configure the main internal regulator output voltage 
  */
  __HAL_RCC_PWR_CLK_ENABLE();
  __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
  /** Initializes the CPU, AHB and APB busses clocks 
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
  RCC_OscInitStruct.HSEState = RCC_HSE_BYPASS;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  RCC_OscInitStruct.PLL.PLLM = 4;
  RCC_OscInitStruct.PLL.PLLN = 100;
  RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
  RCC_OscInitStruct.PLL.PLLQ = 4;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }
  /** Initializes the CPU, AHB and APB busses clocks 
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_3) != HAL_OK)
  {
    Error_Handler();
  }
}

/**
  * @brief ADC1 Initialization Function
  * @param None
  * @retval None
  */
static void MX_ADC1_Init(void)
{

  /* USER CODE BEGIN ADC1_Init 0 */

  /* USER CODE END ADC1_Init 0 */

  ADC_ChannelConfTypeDef sConfig = {0};

  /* USER CODE BEGIN ADC1_Init 1 */

  /* USER CODE END ADC1_Init 1 */
  /** Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion) 
  */
  hadc1.Instance = ADC1;
  hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV8;
  hadc1.Init.Resolution = ADC_RESOLUTION_12B;
  hadc1.Init.ScanConvMode = DISABLE;
  hadc1.Init.ContinuousConvMode = DISABLE;
  hadc1.Init.DiscontinuousConvMode = DISABLE;
  hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_RISING;
  hadc1.Init.ExternalTrigConv = ADC_EXTERNALTRIGCONV_T3_TRGO;
  hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
  hadc1.Init.NbrOfConversion = 1;
  hadc1.Init.DMAContinuousRequests = ENABLE;
  hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
  if (HAL_ADC_Init(&hadc1) != HAL_OK)
  {
    Error_Handler();
  }
  /** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time. 
  */
  sConfig.Channel = ADC_CHANNEL_10;
  sConfig.Rank = 1;
  sConfig.SamplingTime = ADC_SAMPLETIME_3CYCLES;
  if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN ADC1_Init 2 */

  /* USER CODE END ADC1_Init 2 */

}

/**
  * @brief I2C2 Initialization Function
  * @param None
  * @retval None
  */
static void MX_I2C2_Init(void)
{

  /* USER CODE BEGIN I2C2_Init 0 */

  /* USER CODE END I2C2_Init 0 */

  /* USER CODE BEGIN I2C2_Init 1 */

  /* USER CODE END I2C2_Init 1 */
  hi2c2.Instance = I2C2;
  hi2c2.Init.ClockSpeed = 400000;
  hi2c2.Init.DutyCycle = I2C_DUTYCYCLE_2;
  hi2c2.Init.OwnAddress1 = 0;
  hi2c2.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
  hi2c2.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
  hi2c2.Init.OwnAddress2 = 0;
  hi2c2.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
  hi2c2.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
  if (HAL_I2C_Init(&hi2c2) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN I2C2_Init 2 */

  /* USER CODE END I2C2_Init 2 */

}

/**
  * @brief TIM3 Initialization Function
  * @param None
  * @retval None
  */
static void MX_TIM3_Init(void)
{

  /* USER CODE BEGIN TIM3_Init 0 */

  /* USER CODE END TIM3_Init 0 */

  TIM_ClockConfigTypeDef sClockSourceConfig = {0};
  TIM_MasterConfigTypeDef sMasterConfig = {0};
  TIM_OC_InitTypeDef sConfigOC = {0};

  /* USER CODE BEGIN TIM3_Init 1 */

  /* USER CODE END TIM3_Init 1 */
  htim3.Instance = TIM3;
  htim3.Init.Prescaler = 99;
  htim3.Init.CounterMode = TIM_COUNTERMODE_UP;
  htim3.Init.Period = 124;
  htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE;
  if (HAL_TIM_Base_Init(&htim3) != HAL_OK)
  {
    Error_Handler();
  }
  sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
  if (HAL_TIM_ConfigClockSource(&htim3, &sClockSourceConfig) != HAL_OK)
  {
    Error_Handler();
  }
  if (HAL_TIM_OC_Init(&htim3) != HAL_OK)
  {
    Error_Handler();
  }
  sMasterConfig.MasterOutputTrigger = TIM_TRGO_UPDATE;
  sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  if (HAL_TIMEx_MasterConfigSynchronization(&htim3, &sMasterConfig) != HAL_OK)
  {
    Error_Handler();
  }
  sConfigOC.OCMode = TIM_OCMODE_TIMING;
  sConfigOC.Pulse = 0;
  sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
  sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
  if (HAL_TIM_OC_ConfigChannel(&htim3, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN TIM3_Init 2 */

  /* USER CODE END TIM3_Init 2 */

}

/**
  * @brief USART2 Initialization Function
  * @param None
  * @retval None
  */
static void MX_USART2_UART_Init(void)
{

  /* USER CODE BEGIN USART2_Init 0 */

  /* USER CODE END USART2_Init 0 */

  /* USER CODE BEGIN USART2_Init 1 */

  /* USER CODE END USART2_Init 1 */
  huart2.Instance = USART2;
  huart2.Init.BaudRate = 115200;
  huart2.Init.WordLength = UART_WORDLENGTH_8B;
  huart2.Init.StopBits = UART_STOPBITS_1;
  huart2.Init.Parity = UART_PARITY_NONE;
  huart2.Init.Mode = UART_MODE_TX_RX;
  huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  huart2.Init.OverSampling = UART_OVERSAMPLING_16;
  if (HAL_UART_Init(&huart2) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN USART2_Init 2 */

  /* USER CODE END USART2_Init 2 */

}

/** 
  * Enable DMA controller clock
  */
static void MX_DMA_Init(void) 
{
  /* DMA controller clock enable */
  __HAL_RCC_DMA2_CLK_ENABLE();
  __HAL_RCC_DMA1_CLK_ENABLE();

  /* DMA interrupt init */
  /* DMA1_Stream6_IRQn interrupt configuration */
  HAL_NVIC_SetPriority(DMA1_Stream6_IRQn, 0, 0);
  HAL_NVIC_EnableIRQ(DMA1_Stream6_IRQn);
  /* DMA2_Stream0_IRQn interrupt configuration */
  HAL_NVIC_SetPriority(DMA2_Stream0_IRQn, 0, 0);
  HAL_NVIC_EnableIRQ(DMA2_Stream0_IRQn);

}

/**
  * @brief GPIO Initialization Function
  * @param None
  * @retval None
  */
static void MX_GPIO_Init(void)
{
  GPIO_InitTypeDef GPIO_InitStruct = {0};

  /* GPIO Ports Clock Enable */
  __HAL_RCC_GPIOC_CLK_ENABLE();
  __HAL_RCC_GPIOH_CLK_ENABLE();
  __HAL_RCC_GPIOA_CLK_ENABLE();
  __HAL_RCC_GPIOB_CLK_ENABLE();

  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(LD2_GPIO_Port, LD2_Pin, GPIO_PIN_RESET);

  /*Configure GPIO pin : B1_Pin */
  GPIO_InitStruct.Pin = B1_Pin;
  GPIO_InitStruct.Mode = GPIO_MODE_IT_FALLING;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  HAL_GPIO_Init(B1_GPIO_Port, &GPIO_InitStruct);

  /*Configure GPIO pin : LD2_Pin */
  GPIO_InitStruct.Pin = LD2_Pin;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  HAL_GPIO_Init(LD2_GPIO_Port, &GPIO_InitStruct);

}

/* USER CODE BEGIN 4 */
////////////////////////////////////////////////////
void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef *hadc)
{
	HAL_GPIO_TogglePin(GPIOA,GPIO_PIN_5);
	SSD1306_Fill(SSD1306_COLOR_BLACK);
	if(round==2)
	{
		drawMap2();
		SSD1306_GotoXY(5,5);
		SSD1306_Putc('2',&Font_7x10,SSD1306_COLOR_WHITE);

		int vr=(int)(((float)findMax()/4095)*64);
		int vb=vr-32;
		if(vb>50)vb=50;
		if(vb<0)vb=0;
		if(vb!=preV)
		{
			X++;
			preV=vb;
		}
		int y;
		y=setFloor2(floor,vb);
		if(y<0)y=0;
		GameControl2(X,y);
		if(gameover==0)SSD1306_DrawCircle(X,y,2,SSD1306_COLOR_WHITE);
		SSD1306_UpdateScreen();
	}
	else
	{
		drawMap1();
		SSD1306_GotoXY(5,5);
		SSD1306_Putc('1',&Font_7x10,SSD1306_COLOR_WHITE);

		//adjust range of volume value from adcValue: volume[0,infinite),vr[32,64]
		int vr=(int)(((float)findMax()/4095)*64);
		//adjust base of volume value: vb[0,50]
		int vb=vr-32;
		if(vb>50)vb=50;
		if(vb<0)vb=0;
		//if volume changed (compared with previous volume), position will be changed (x=x+1,y=new y)
		if(vb!=preV)
		{
			X++;
			preV=vb;//record volume
		}
		//set y: vb[0,50],y[48,0]
		int y;
		y=setFloor1(floor,vb);
		if(y<0)y=0;
		GameControl1(X,y);
		if(gameover==0)
		{
			//update position
			SSD1306_DrawCircle(X,y,2,SSD1306_COLOR_WHITE);
		}
		SSD1306_UpdateScreen();
	}
}

void GameControl1(int x, int y)
{
	if((x>50&&x<60&&y>40&&y<50)||y>60)
	{
		SSD1306_GotoXY(30,10);
		SSD1306_Puts("GAME OVER",&Font_7x10,SSD1306_COLOR_WHITE);
		gameover=1;
	}
	if(x>=127)
	{
		round=2;
		X=0;
	}

	if(x>95&&y<40)
	{
		floor=2;
	}

	if((x>90&&x<95))
	{
		floor=0;
	}
}

int setFloor1(int f,int volume)
{
	int base;
	if(f==0) base=64-volume;//vb[0,50],y[64,14]
	else if(f==1) base=46-volume;
	else if(f==2) base=36-volume;//vb[0,50],y[28,0]
	return base;
}


void drawMap1()
{
	SSD1306_DrawFilledRectangle(0,50,90,14,SSD1306_COLOR_WHITE);//floor1
	SSD1306_DrawFilledRectangle(95,40,33,5,SSD1306_COLOR_WHITE);//floor2

	SSD1306_DrawRectangle(50,40,10,10,SSD1306_COLOR_WHITE);//obstacle
	SSD1306_DrawLine(50,40,60,50,SSD1306_COLOR_WHITE);
	SSD1306_DrawLine(60,40,50,50,SSD1306_COLOR_WHITE);
}

void drawMap2()
{
	SSD1306_DrawFilledRectangle(0,50,20,14,SSD1306_COLOR_WHITE);//floor1
	SSD1306_DrawFilledRectangle(30,50,40,14,SSD1306_COLOR_WHITE);//floor2
	SSD1306_DrawFilledRectangle(85,15,5,5,SSD1306_COLOR_WHITE);//floor3
	SSD1306_DrawFilledRectangle(100,30,33,34,SSD1306_COLOR_WHITE);//floor4

	SSD1306_DrawRectangle(50,40,10,10,SSD1306_COLOR_WHITE);//obstacle
	SSD1306_DrawLine(50,40,60,50,SSD1306_COLOR_WHITE);
	SSD1306_DrawLine(60,40,50,50,SSD1306_COLOR_WHITE);
}

int setFloor2(int f,int volume)
{
	int base;
	if(f==0) base=64-volume;
	else if(f==1) base=46-volume;
	else if(f==2) base=46-volume;
	else if(f==3) base=11-volume;
	else if(f==4) base=26-volume;
	return base;
}

void GameControl2(int x, int y)
{
	if((x>50&&x<60&&y>40&&y<50)||(x>20&&x<30&&y>45)||(x>70&&x<85&&y>45)||(x>85&&x<100&&y>30)||y>60)
	{
		SSD1306_GotoXY(30,10);
		SSD1306_Puts("GAME OVER",&Font_7x10,SSD1306_COLOR_WHITE);
		gameover=1;
	}
	if(x>=127)
	{
		SSD1306_GotoXY(40,10);
		SSD1306_Puts("YOU WIN",&Font_7x10,SSD1306_COLOR_WHITE);
		gameover=1;
	}
	if((x>100&&y<30))
	{
		floor=4;
	}
	if((x>85&&y<15))
	{
		floor=3;
	}
	if(x>30&&y<40)
	{
		floor=2;
	}

	if((x>90&&x<95))
	{
		floor=0;
	}
}

int findMax()
{
	int i=0;
	int max=adcValues[0];
	for(i=0;i<128;i++)
	{
		if(adcValues[i]>max) max=adcValues[i];
	}
	return max;
}



/* USER CODE END 4 */

/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */

  /* USER CODE END Error_Handler_Debug */
}

#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{ 
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     tex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

結果

在這裏插入圖片描述
在這裏插入圖片描述
在這裏插入圖片描述
在這裏插入圖片描述

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章