C++入門學習

C++的初步學習有以下幾個方面

1.C++關鍵字

我們知道,在c中有32個關鍵字,而c++中有63個關鍵字
分別爲
C++入門學習

2.命名空間

爲什麼會有命名空間,他的作用是什麼?
在一個大的工程裏,要定義很多變量和函數,若將這些變量和函數都定義在全局作用域中,一不小心就可能出現重複定義的情況。因而引入命名空間的概念,其目的是對標識符名稱進行本地化,以避免命名衝突或名字衝突。
命名空間是什麼?
一個命名空間就定義了一個新的作用域,命名空間中的所有內容都侷限於該命名空間裏。命名空間裏可有變量、函數、結構體、另一個命名空間等等普通在全局定義的命名空間裏都可以有。在不同的命名空間裏可以使用一個變量名。以後在使用某個命名空間裏的某個變量,引入就可以了。這樣定義變量時,就不用考慮之前這個名字有沒有用過,只用看在這個命名空間裏存不存在該變量。
命名空間的定義
定義命名空間,需要使用到namespace關鍵字,後面跟命名空間的名字,然後接一對{}即可,{}中即爲命名空間的成員。命名空間的定義有以下三種形式:

//1.普通定義
namespace N1 // N1爲命名空間的名稱
{
 int a;
 int Add(int left, int right)
 {
 return left + right;
 }
}

//2.嵌套定義
namespace N2
{
 int a;
 int b;
 int Add(int left, int right)
 {
 return left + right;
 }

 namespace N3
 {
 int c;
 int d;
 int Sub(int left, int right)
 {
 return left - right;
 }
 }
}
//3.重複的定義
namespace N1{int a};
namespace N1{int b};
//在編譯時,編譯器會自動將其合併爲一個命名空間,在定義的時候也可將其看做同一個命名空間,因而同名命名空間不要使用相同變量

命名空間的使用
在命名空間裏定義的內容是不可以直接使用的。
引用一個操作符 ‘::’ 作用域限定符用於在作用域外引用作用域裏的內容
引用一個關鍵字:在一個作用域中使用 using 將另一個命名空間裏的想要的內容拿出來,方便下面使用

使用方式有以下三種:

//1.加命名空間名稱及作用域限定符
namespace N
{
 int a;
 int b;
 }
 int main{
printf("%d\n", N::a);     打印N中的a
return 0;
}

//2.使用using將命名空間中成員引入
using N::b;
int main()
{
 printf("%d\n", N::a);  //並沒引入a
 printf("%d\n", b);       //在此的b就可以直接使用了
 return 0;
 }

// 3.使用using namespace 命名空間名稱引入
using namespce N;   //將N 中所有的內容都引入
int main()
{
 printf("%d\n", a);
 printf("%d\n", b);
 return 0; 
}

3.C++輸入&輸出

輸出函數:cout標準輸出(控制檯)類似於printf
輸入函數:cin標準輸入(鍵盤)類似於scanf
兩個函數屬於標準庫 iostream 再引入命名空間std
用法:他們的用法比printf和scanf要靈活,輸出不用再加%d..來說明輸出/輸入什麼類型的值,可連接各種類型的值
例如如下代碼

#include <iostream>
using namespace std;
int main()
{
 int a;
 double b;
 char c;

 cin>>a;
 cin>>b>>c;

 cout<<a<<endl;
 cout<<b<<" "<<c<<endl;

 return 0;
}

4.缺省參數

概念:缺省參數是聲明或定義函數時爲函數的參數指定一個默認值。在調用該函數時,如果沒有指定實參則採用該默認值,否則使用指定的實參。例如:

void TestFunc(int a = 0)
{
 cout<<a<<endl;
}
int main()
{
 TestFunc(); // 沒有傳參時,使用參數的默認值 0
 TestFunc(10); // 傳參時,使用指定的實參
}

在一個函數的形參列表中,我們可以給一部分形參默認值,也可以全給。因此分爲半缺省參數和全缺省參數,用法及要求如下

全缺省參數:每個形參都賦了缺省值

void TestFunc(int a = 10, int b = 20, int c = 30)
{
 cout<<"a = "<<a<<endl;
 cout<<"b = "<<b<<endl;
 cout<<"c = "<<c<<endl;
}
int  main()
{
     TestFunc();      //10 20 30
         TestFunc(1);    //1    20  30
         TestFunc(1,2);  // 1 2 30
         //爲什麼把1給a呢?我們從半缺省參數用法裏找答案

}

半缺省參數:不是所有的形參都賦了缺省值,但賦半缺省參數有一定規則: 半缺省參數必須從右往左依次來給出,不能間隔着給,就是前面的可以省略,但一旦給值,後面的都必須都給值 。因此

void TestFunc(int a, int b = 10, int c = 20)√                  
void TestFunc(int a=10, int b , int c = 20)  ×                           
void TestFunc(int a=10, int b=20 , int c )  ×

通過半缺省參數的規則,我們可回答爲什麼全缺省參數給值是從前往後給的:半缺省參數前面的可以省略,所以在不知道函數是不是半缺省參數的情況下,實參要賦從第一個形參開始賦值

5. 函數重載

定義:在同一作用域中聲明幾個功能類似的同名函數,這些同名函數的形參列表(參數個數 或 類型 或 順序)必須不同,常用來處理實現功能類似數據類型不同的問題。
如以下代碼:

int Add(int left, int right)
{
 return left+right;
}
double Add(double left, double right)
{
 return left+right;
}
long Add(long left, long right)
{
 return left+right;
}
int main()
{
 Add(10, 20);
 Add(10.0, 20.0);
 Add(10L, 20L);       //通過實參類型來找函數
 return 0;
 }

注:函數不可僅靠返回值類型來實現重載

short Add(short left, short right)
{
 return left+right;
}
int Add(short left, short right)
{
 return left+right;
}
//這兩個函數無法實現重載
  • 注:
    缺省函數與無參函數無法形成重載 ,例如:
    void TestFunc(int a = 10);                            
    void TestFunc( );
    //這兩個函數就無法形成重載,在另一個函數中調用TestFunc( ),編譯器不知道要調用哪一個;

缺省函數與普通函數無法形成重載,例如:

void TestFunc(int a = 10);                            
void TestFunc(int a );
//這兩個函數就無法形成重載,在另一個函數中調用TestFunc(num ),編譯器不知道要調用哪一個;

因而:想要形成函數重載,要確保兩個函數在調用的時候不會起衝突,不會出現在傳某個值的時候,兩個函數都可以調的情況。

我們知道:c語言中不可以實現函數重載,爲什麼c++中可以呢?因爲在程序編譯時,編譯器會對每個函數名進行命名修飾,下面我們來引入命名修飾的概念

名字修飾

在c++程序編譯時,編譯器爲區分各個函數,會將函數、變量名重新改變,使每個函數名成爲全局唯一的名稱,將參數類型包含在最終的名字中,因而通過形參列表的不同可以將同名函數進行區分,就可保證名字在底層的全局唯一性。
那麼c++中具體將名字修改成什麼樣子了呢?
有如下代碼:

int Add(int left, int right);
double Add(double left, double right);
int main()
{
 Add(1, 2);
 Add(1.0, 2.0);
 return 0;
}
//在vs下,對上述代碼進行編譯鏈接,最後編譯器報錯:
 //error LNK2019: 無法解析的外部符號 "double cdecl Add(double,double)" (?Add@@YANNN@Z)
// error LNK2019: 無法解析的外部符號 "int __cdecl Add(int,int)" (?Add@@YAHHH@Z)

通過上述錯誤可以看出,編譯器實際在底層使用的不是Add名字,而是被重新修飾過的一個比較複雜的名字,被重新修飾後的名字中包含了:函數的名字以及參數類型。
visual stdio 下c++的修飾規則:
C++入門學習
通過以上簽名及修飾後的名字可推得命名方式:
修飾後名字由“?”開頭,接着是函數名由“@"符號結尾的函數名:後面跟着由“@"結尾的類名“C”和名稱空間“N”,再一個“@”表示函數的名稱空間結束:第一個“A”表示函數調用類型爲“_ cdecl” ,接着是函數的參數類型及返回值,由“@”結束,最後由“Z”結尾。其中A後面第一個是返回值類型,然後接下來到@之前都是形參的類型,H表示int,M表示float

那爲什麼c語言中,同名函數爲什麼不能構成重載呢?
因爲c語言中的名字修飾只是在函數名前加了個下劃線,形參列表並未參與名字修飾,因而不能夠通過形參列表來區分各個同名函數。

在某個函數前加extern “C”,可將c++工程中某些函數按c的風格來編譯

6. 引用

概念:給變量取了個別名,和變量共用一塊內存空間,可以通過引用來改變變量。
定義:類型& 引用變量名=引用實體
注意:引用類型必須和引用實體的類型必須相同。
如:

int a = 10;
 int& ra = a;//定義引用類型

 printf("%p\n", &a);
 printf("%p\n", &ra);    //結果相同

引用特性
1>引用在定義時必須初始化,不能存在空着的引用

 int& ra ;//會發生錯誤
 //起了外號,這個外號又不是任何人的,這個外號存在有什麼意義?

2>一個變量可有多個引用(一個人可以起很多個別名)
3>引用一旦引用一個實體,再不能引用其他實體

int a=0; 
int b=1;
int& ra=a; 
ra=b;   //ra不是改變了引用,只是將b的值賦給ra
printf("%d",a);  //->1

常引用

const int a = 10;
 int& ra = a; // 該語句編譯時會出錯,a爲常量
 //const修飾的變量,引用前也要加const,若不加,那麼就可以通過引用修改變量的值了。
 const int& ra = a;//正確寫法

 int& b = 10; // 該語句編譯時會出錯,10爲常量
 //引用不能做常數的引用,要引用前面加const,常熟也是不能夠被修改的
 const int& b = 10;

 double d = 12.34;
 int& rd = d; // 該語句編譯時會出錯,類型不同

 const int& rd = d;//這個是正確的的,但rd並不是d的別名
 //而是先通過a來形成一個臨時變量存放a的整數部分,然後ra引用這個臨時變量。但是該臨時變量不知道名字,也不知道地址,因而也修改不了,該臨時變量具有一定的常性,因而要在ra前加const

引用使用場景
1>做參數:函數形參設爲引用類型

void Swap(int& left, int& right)
{
 int temp = left;
 left = right;
 right = temp;
}

說明:如果想要通過形參改變實參,可將形參設爲普通類型 如果不想要通過形參改變實參,可將形參設爲const類型。

傳值、傳址、傳引用效率比較:

效率:傳值的效率低於傳址、傳引用效率。傳地址和傳引用時間相同。因爲傳引用和傳指針的過程在內存中的變化其實是一樣的,傳引用的過程在編譯時,會轉成傳指針的形式,在編譯過程中,引用是按照指針方式來實現的

#include <time.h>
struct A
{
 int a[10000];
};
void TestFunc1(A a)
{}
void TestFunc2(A& a)
{}

void TestRefAndValue()
{
 A a;
 // 以值作爲函數參數
 size_t begin1 = clock();
 for (size_t i = 0; i < 10000; ++i)
 TestFunc1(a);
 size_t end1 = clock();
 // 以引用作爲函數參數

 size_t begin2 = clock();
 for (size_t i = 0; i < 10000; ++i)
 TestFunc2(a);
 size_t end2 = clock();

 // 分別計算兩個函數運行結束後的時間
 cout << "TestFunc1(int*)-time:" << end1 - begin1 << endl;
 cout << "TestFunc2(int&)-time:" << end2 - begin2 << endl;
}

// 運行多次,檢測值和引用在傳參方面的效率區別
//結果都很小,而且相差無幾
//反彙編後,可看到傳引用的過程和傳指針的過程一模一樣。
int main()
{
 for (int i = 0; i < 10; ++i)
 {
 TestRefAndValue();
 }

 return 0;
}

2>做返回值:將返回值類型設爲引用類型

int& TestRefReturn(int& a)
{
 a += 10;
 return a;
}

注意:如果函數返回時,離開函數作用域後,其棧上空間已經還給系統,因此不能用棧上的空間作爲引用類型返回。因此,引用作爲返回值,返回變量不應受函數控制,即函數結束,變量的生命週期存在。比如:全局變量,static修飾的局部變量,用戶未釋放的堆,引用類型參數
發生該錯誤有以下代碼:

int& Add(int a, int b)
{
 int c = a + b;
 return c;
}
//在函數調用完後,棧上的c佔用的那一塊空間就被釋放了(可以覆蓋),因此就沒什麼意義了
int main()
{
 int& ret = Add(1, 2);
 Add(3, 4);
 cout << "Add(1, 2) is :"<< ret <<endl;
 //->7,Add(3, 4)將c的那一塊空間又覆蓋掉了
 return 0;
}
值和引用的作爲返回值類型的性能比較

通過比較,發現傳值和指針在作爲傳參以及返回值類型上效率相差很大,因而可以讓引用作爲返回值的地方就用引用,除非是要返回一個函數中定義的變量(該變量的空間會隨函數調用完而變得無效)要返回值外,其他情況都可用引用返回。

#include <time.h>
struct A
{
 int a[10000];
};
A a;
A TestFunc1()
{
 return a;
}
A& TestFunc2()
{
 return a;
}
void TestReturnByRefOrValue()
{
 // 以值作爲函數的返回值類型
 size_t begin1 = clock();
 for (size_t i = 0; i < 100000; ++i)
 TestFunc1();
 size_t end1 = clock();
 // 以引用作爲函數的返回值類型
 size_t begin2 = clock();
 for (size_t i = 0; i < 100000; ++i)
 TestFunc2();
 size_t end2 = clock();
 // 計算兩個函數運算完成之後的時間
 cout << "TestFunc1 time:" << end1 - begin1 << endl;
 cout << "TestFunc2 time:" << end2 - begin2 << endl;
}
// 測試運行10次,值和引用作爲返回值效率方面的區別
int main()
{
 for (int i = 0; i < 10; ++i)
 TestReturnByRefOrValue();
 return 0;
}

引用與指針
在語法概念上引用就是一個別名,沒有獨立空間,和其引用實體共用同一塊空間,但在底層實現上實際是有空間的,因爲引用是按照指針方式來實現的。

int main()
{
int x = 10;

    int& rx = x;
    rx = 20;

    int* px = &x;
    *px = 20;
    return 0;
    }

對於該代碼我們來看反彙編代碼:
C++入門學習
可發現,在內存中兩者在底層的使用方式是一樣的,引用也是按照指針方式來實現的
那兩者又有什麼不同呢?
1> 引用在定義時必須初始化,指針沒有要求。因而指針需要判空,而引用不用,因爲引用定義時就初始化了
2> 引用在初始化時引用一個實體後,就不能再引用其他實體,而指針可以在任何時候指向任何一個同類型實體
3> 沒有NULL引用,但有NULL指針
4>在sizeof中含義不同:引用結果爲引用類型的大小,但指針始終是地址空間所佔字節個數(32位平臺下佔4個字節)
5>引用自加即引用的實體增加1,在連續的空間中指針自加即指針向後偏移一個類型的大小
6>有多級指針,但是沒有多級引用
7> 訪問實體方式不同,指針需要顯式解引用,引用編譯器自己處理
8> 引用比指針使用起來相對更安全。

7.內聯函數

概念:以inline修飾的函數叫做內聯函數,編譯時C++編譯器會在調用內聯函數的地方展開,沒有函數壓棧的開銷,內聯函數提升程序運行的效率。

普通函數會進行壓棧形成棧幀等操作
C++入門學習
而內聯函數在編譯時會直接將調用函數換爲函數內部的操作
C++入門學習
查看方式:1. 在release模式下,查看編譯器生成的彙編代碼中是否存在call Add2. 在debug模式下,需要對編譯器進行設置,否則不會展開(因爲debug模式下,編譯器默認不會對代碼進行優化,給出vs2013的設置方式):功能->屬性->配置->c/c++->將常規中的調試信息格式改爲程序數據庫,再將優化中的內聯函數擴展改爲只適用於_inline

特性
1> inline是一種以空間換時間的做法。所以代碼很長或者有循環/遞歸的函數不適宜使用作爲內聯函數。
2>inline對於編譯器而言只是一個建議,編譯器會自動優化,如果定義爲inline的函數體內有循環/遞歸等等,編譯器優化時會忽略掉內聯。
3>inline不建議聲明和定義分離,分離會導致鏈接錯誤。因爲inline被展開,就沒有函數地址了,鏈接就會找不到。因而內聯函數具有文件作用域,只在本文件有用,其他文件不可用。

// F.h
#include <iostream>
using namespace std;
inline void f(int i);
// F.cpp
#include "F.h"
void f(int i)
{
 cout << i << endl;
}
// main.cpp
#include "F.h"
int main()
{
 f(10);
 return 0;
}
// 鏈接錯誤:main.obj : error LNK2019: 無法解析的外部符號 "void __cdecl f(int)" (?
f@@YAXH@Z),該符號在函數 _main 中被引用

內聯函數與const、宏

在c++中,const修飾的變量有常量的特性也有宏的特性,在編譯時會發生替換和檢測,即使通過指針修改也無法改變變量值。有如下代碼

const int a=1;
int *pa=(int *)a;
*pa=2;
printf("%d,%d",*pa,a);
//結果爲2,1  a仍然沒有修改

而在c中是可以的,因爲c中是不會檢測的,通過指針也是修改const變量的

宏是在預處理時替換的,不參與編譯,也不可調試。
宏的優點:增強代碼的複用性。提高性能。
缺點:
1>不方便調試宏。(因爲預處理階段進行了替換)
2>導致代碼可讀性差,可維護性差,容易誤用。
3>沒有類型安全的檢查 。

因此在c++中,可通過const來代替宏對常量的定義,用內聯函數來代替宏對函數的定義

8. auto關鍵字

概念:在C++中,auto作爲一個新的類型指示符來定義變量,auto聲明的變量是由編譯器在編譯時期推導而得,變量被賦值什麼類型,由初始化的值而定。

特性
1>使用auto定義變量時必須對其進行初始化,在編譯階段編譯器需要根據初始化表達式來推導auto的實際類型。
2>auto並非是一種“類型”的聲明,而是一個類型聲明時的“佔位符”,編譯器在編譯期會將auto替換爲變量實際的類型

int TestAuto()
{
 return 10;
}
int main()
{
 int a = 10;
 auto b = a;
 auto c = 'a';
 auto d = TestAuto();

 cout << typeid(b).name() << endl;          //int
 cout << typeid(c).name() << endl;          //char
 cout << typeid(d).name() << endl;          //int

 //auto e; 無法通過編譯,使用auto定義變量時必須對其進行初始化
 return 0;
}

使用方法
1>auto與指針和引用結合:用auto聲明指針類型時,用auto和auto* 沒有任何區別,但用auto聲明引用類型時則必須加&.

   int x = 1;
    auto px = &x;
    auto *ppx = &x;
    auto& rx = x;
    auto rrx = x;

    cout << typeid(px).name() << endl;
    cout << typeid(ppx).name() << endl;
    cout << typeid(rx).name() << endl;
    cout << typeid(rrx).name() << endl;
    rx = 3;
    cout << x << endl;        //x發生了變化說明是引用
    rrx = 2;
    cout << x << endl;        //x未發生變化,說明不是引用

2>auto在同一行定義多個變量,當在同一行聲明多個變量時,這些變量必須是相同的類型,否則編譯器將會報錯,因爲編譯器實際只對第一個類型進行推導,然後用推導出來的類型定義其他變量。

    auto f = 1, g = 2;
    //auto h = 1, i = 2.3; //編譯會報錯,h和i類型不同

3>auto不能直接用來聲明數組

    int h[] = { 1, 2, 3 };
    //auto t[] = { 4,5,6 };//編譯時會發生錯誤

9. 基於範圍的for循環

爲什麼要引入這個概念?
對一個有範圍的集合由程序員來說明循環的範圍是多餘的,有時候還會容易犯錯誤。因此C++11中引入了基於範圍的for循環。

用法:for循環後的括號由冒號“ :”分爲兩部分:第一部分是範圍內用於迭代的變量,第二部分則表示被迭代的範圍。

int arr[] = { 1, 2, 3, 4, 5 };
    for (auto& e : arr)            //=>for (int i = 0; i < sizeof(array) / sizeof(array[0]); ++i)

        e *= 2;

    for (auto e : arr)             //要對元素值進行改變,變量前要加&,不改變,直接普通變量      

        cout << e << " ";

對於數組而言,就是數組中第一個元素和最後一個元素的範圍;對於類而言,應該提供begin和end的方法,begin和end就是for循環迭代的範圍。

10.指針空值---nullptr

概念:nullptr指針空值常量,表示指針空值使用nullptr。
爲什麼要有nullptr,NULL爲什麼無法用於表示空指針了?
在指針定義時,要初始化(否則會出現野指針),在c中用NULL來給一個沒有指向的指針,但其實NULL是一個宏,在傳統的C頭文件(stddef.h)中,可以看到如下代碼

#ifndef NULL
#ifdef __cplusplus
#define NULL 0
#else
#define NULL ((void *)0)
#endif
#endif

可以看到,NULL可能被定義爲字面常量0,或者被定義爲無類型指針(void*)的常量,所以在傳空指針時,會出現一些差強人意的錯誤,如下:

void f(int)
{
 cout<<"f(int)"<<endl;
}
void f(int*)
{
 cout<<"f(int*)"<<endl;
}
int main()
{
 f(0);
 f(NULL);        //變成0了,進了第一個函數,但我們NULL想表示指針本是想進入第二個函數
 f((int*)NULL);
 return 0;
}

因而用nullptr來代替C中NULL在指針中的用法。

並且nullptr也是有類型的,其類型爲nullptr_t,僅僅可以被隱式轉化爲指針類型,nullptr_t被定義在頭文件中:typedef decltype(nullptr) nullptr_t;

注意:

  1. 在使用nullptr表示指針空值時,不需要包含頭文件,因爲nullptr是C++11作爲新關鍵字引入的。
  2. 在C++11中,sizeof(nullptr) 與 sizeof((void*)0)所佔的字節數相同,都是4。
  3. 爲了提高代碼的健壯性,在後續表示指針空值時建議最好使用nullptr。
發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章