Zygote進程【1】——Zygote的誕生

歡迎轉載,轉載請註明:http://blog.csdn.net/zhgxhuaa


在Android中存在着C和Java兩個完全不同的世界,前者直接建立在Linux的基礎上,後者直接建立在JVM的基礎上。zygote的中文名字爲“受精卵”,這個名字很好的詮釋了zygote進程的作用。作爲java世界的孵化者,zygote本身是一個native程序,是由init根據init.rc文件中的配置項創建的。

@/system/core/rootdir/init.rc

service zygote /system/bin/app_process -Xzygote /system/bin --zygote --start-system-server
    class main
    socket zygote stream 660 root system
    onrestart write /sys/android_power/request_state wake
    onrestart write /sys/power/state on
    onrestart restart media
    onrestart restart netd
關於init是如何解析和創建zygote進程的,這裏不再贅述,不明的同學可以參考init進程【2】——解析配置文件一文。這裏解析一下上面的第一行:service是rc腳本中的一種SECTION,zygote表示service的名字,/system/bin/app_process表示service的路徑,-Xzygote /system/bin --zygote --start-system-server則表示傳入的參數。

zygote的實現在app_main.cpp中:

@frameworks/base/cmds/app_process/app_main.cpp

int main(int argc, char* const argv[])
{
//針對ARM平臺的特殊邏輯
#ifdef __arm__
    /*
     * b/7188322 - Temporarily revert to the compat memory layout
     * to avoid breaking third party apps.
     *
     * THIS WILL GO AWAY IN A FUTURE ANDROID RELEASE.
     *
     * http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-2.6.git;a=commitdiff;h=7dbaa466
     * changes the kernel mapping from bottom up to top-down.
     * This breaks some programs which improperly embed
     * an out of date copy of Android's linker.
     */
    char value[PROPERTY_VALUE_MAX];
    property_get("ro.kernel.qemu", value, "");
    bool is_qemu = (strcmp(value, "1") == 0);
    if ((getenv("NO_ADDR_COMPAT_LAYOUT_FIXUP") == NULL) && !is_qemu) {
        int current = personality(0xFFFFFFFF);
        if ((current & ADDR_COMPAT_LAYOUT) == 0) {
            personality(current | ADDR_COMPAT_LAYOUT);
            setenv("NO_ADDR_COMPAT_LAYOUT_FIXUP", "1", 1);
            execv("/system/bin/app_process", argv);
            return -1;
        }
    }
    unsetenv("NO_ADDR_COMPAT_LAYOUT_FIXUP");
#endif

    // These are global variables in ProcessState.cpp
    mArgC = argc;
    mArgV = argv;

    mArgLen = 0;
    for (int i=0; i<argc; i++) {
        mArgLen += strlen(argv[i]) + 1;
    }
    mArgLen--;

    AppRuntime runtime;
    const char* argv0 = argv[0];

    // Process command line arguments
    // ignore argv[0]
    argc--;
    argv++;

    // Everything up to '--' or first non '-' arg goes to the vm

    int i = runtime.addVmArguments(argc, argv);

    // Parse runtime arguments.  Stop at first unrecognized option.
    bool zygote = false;
    bool startSystemServer = false;
    bool application = false;
    const char* parentDir = NULL;
    const char* niceName = NULL;
    const char* className = NULL;
    while (i < argc) {//根據傳入的參數,初始化啓動zygote所需的參數
        const char* arg = argv[i++];
        if (!parentDir) {
            parentDir = arg;
        } else if (strcmp(arg, "--zygote") == 0) {
            zygote = true;
            niceName = "zygote";
        } else if (strcmp(arg, "--start-system-server") == 0) {
            startSystemServer = true;
        } else if (strcmp(arg, "--application") == 0) {
            application = true;
        } else if (strncmp(arg, "--nice-name=", 12) == 0) {
            niceName = arg + 12;
        } else {
            className = arg;
            break;
        }
    }

    if (niceName && *niceName) {
        setArgv0(argv0, niceName);
        set_process_name(niceName);//設置本進程的名稱爲zygote,至此進程有app_process變爲了zygote
    }

    runtime.mParentDir = parentDir;

    if (zygote) {//根據我們傳入的參考,這裏的zygote值爲TRUE
        runtime.start("com.android.internal.os.ZygoteInit",
                startSystemServer ? "start-system-server" : "");
    } else if (className) {//可以看出除了zygote,RuntimeInit也是在這裏啓動的
        // Remainder of args get passed to startup class main()
        runtime.mClassName = className;
        runtime.mArgC = argc - i;
        runtime.mArgV = argv + i;
        runtime.start("com.android.internal.os.RuntimeInit",
                application ? "application" : "tool");
    } else {
        fprintf(stderr, "Error: no class name or --zygote supplied.\n");
        app_usage();
        LOG_ALWAYS_FATAL("app_process: no class name or --zygote supplied.");
        return 10;
    }
}
通過對main()函數的分析,可以看出main()主要根據傳入的參數初始化啓動參數,具體的啓動過程是由AppRuntime完成的。AppRuntime的聲明和實現都在app_main.cpp中,它繼承自AndroidRuntime,AppRuntime的實現如下:

可以看出start是AndroidRuntime中的方法。通過start函數前面的註釋我們瞭解到它的主要作用是:啓動Android運行時環境,包括啓動虛擬機和調用className參數所指定的類的main()方法(即:Java中的main方法)。
/*
 * Start the Android runtime.  This involves starting the virtual machine
 * and calling the "static void main(String[] args)" method in the class
 * named by "className".
 *
 * Passes the main function two arguments, the class name and the specified
 * options string.
 */
void AndroidRuntime::start(const char* className, const char* options)
{
    ALOGD("\n>>>>>> AndroidRuntime START %s <<<<<<\n",
            className != NULL ? className : "(unknown)");

    /*
     * 'startSystemServer == true' means runtime is obsolete and not run from
     * init.rc anymore, so we print out the boot start event here.
     */
    if (strcmp(options, "start-system-server") == 0) {
        /* track our progress through the boot sequence */
        const int LOG_BOOT_PROGRESS_START = 3000;
        LOG_EVENT_LONG(LOG_BOOT_PROGRESS_START,
                       ns2ms(systemTime(SYSTEM_TIME_MONOTONIC)));
    }

    //環境變量ANDROID_ROOT是否已經設置,如果未設置,則設置其值爲"/system"
    const char* rootDir = getenv("ANDROID_ROOT");
    if (rootDir == NULL) {
        rootDir = "/system";
        if (!hasDir("/system")) {
            LOG_FATAL("No root directory specified, and /android does not exist.");
            return;
        }
        setenv("ANDROID_ROOT", rootDir, 1);
    }

    //const char* kernelHack = getenv("LD_ASSUME_KERNEL");
    //ALOGD("Found LD_ASSUME_KERNEL='%s'\n", kernelHack);

    /* start the virtual machine */
    JniInvocation jni_invocation;
    jni_invocation.Init(NULL);
    JNIEnv* env;
    if (startVm(&mJavaVM, &env) != 0) {//啓動Java虛擬機
        return;
    }
    onVmCreated(env);//空函數

    /*
     * Register android functions.
     */
    if (startReg(env) < 0) {//註冊Android JNI函數
        ALOGE("Unable to register all android natives\n");
        return;
    }

    /*
     * We want to call main() with a String array with arguments in it.
     * At present we have two arguments, the class name and an option string.
     * Create an array to hold them.
     */
    jclass stringClass;
    jobjectArray strArray;
    jstring classNameStr;
    jstring optionsStr;

    stringClass = env->FindClass("java/lang/String");//JNI中調用java中的String類
    assert(stringClass != NULL);
    //創建包含2個元素的String數組,這裏相當於Java中的String strArray[] = new String[2]
    strArray = env->NewObjectArray(2, stringClass, NULL);
    assert(strArray != NULL);
    classNameStr = env->NewStringUTF(className);//classNameStr的值爲"com.android.internal.os.ZygoteInit"
    assert(classNameStr != NULL);
    env->SetObjectArrayElement(strArray, 0, classNameStr);
    optionsStr = env->NewStringUTF(options);//optionsStr的值爲"start-system-server"
    env->SetObjectArrayElement(strArray, 1, optionsStr);

    /*
     * Start VM.  This thread becomes the main thread of the VM, and will
     * not return until the VM exits.
     */
    char* slashClassName = toSlashClassName(className);//將"com.android.internal.os.ZygoteInit"中的"."替換成"/"供JNI調用
    jclass startClass = env->FindClass(slashClassName);
    if (startClass == NULL) {
        ALOGE("JavaVM unable to locate class '%s'\n", slashClassName);
        /* keep going */
    } else {
        jmethodID startMeth = env->GetStaticMethodID(startClass, "main",
            "([Ljava/lang/String;)V");//ZygoteInit類中的main()方法
        if (startMeth == NULL) {
            ALOGE("JavaVM unable to find main() in '%s'\n", className);
            /* keep going */
        } else {
            env->CallStaticVoidMethod(startClass, startMeth, strArray);//通過JNI調用main()方法

#if 0
            if (env->ExceptionCheck())
                threadExitUncaughtException(env);
#endif
        }
    }
    free(slashClassName);

    //如果JVM退出。這兩句代碼一般來說執行不到
    ALOGD("Shutting down VM\n");
    if (mJavaVM->DetachCurrentThread() != JNI_OK)
        ALOGW("Warning: unable to detach main thread\n");
    if (mJavaVM->DestroyJavaVM() != 0)
        ALOGW("Warning: VM did not shut down cleanly\n");
}
通過上面對start()函數的分析可以發現,在start()中主要完成了如下三項工作:
  1. 啓動JVM。
  2. 註冊Android JNI函數。
  3. 調用ZygoteInit的main()方法。

創建Java虛擬機

start()中與創建虛擬機相關的代碼如下:
    /* start the virtual machine */
    JniInvocation jni_invocation;
    jni_invocation.Init(NULL);
    JNIEnv* env;
    if (startVm(&mJavaVM, &env) != 0) {//啓動Java虛擬機
        return;
    }
    onVmCreated(env);//空函數
這裏代碼中 創建一個JniInvocation實例,並且調用它的成員函數init來初始化JNI環境:
@/libnativehelper/jniInvocation.cpp
bool JniInvocation::Init(const char* library) {
#ifdef HAVE_ANDROID_OS
  char default_library[PROPERTY_VALUE_MAX];
  property_get("persist.sys.dalvik.vm.lib", default_library, "libdvm.so");
#else
  const char* default_library = "libdvm.so";
#endif
  if (library == NULL) {
    library = default_library;
  }

  handle_ = dlopen(library, RTLD_NOW);
  if (handle_ == NULL) {
    ALOGE("Failed to dlopen %s: %s", library, dlerror());
    return false;
  }
  if (!FindSymbol(reinterpret_cast<void**>(&JNI_GetDefaultJavaVMInitArgs_),
                  "JNI_GetDefaultJavaVMInitArgs")) {
    return false;
  }
  if (!FindSymbol(reinterpret_cast<void**>(&JNI_CreateJavaVM_),
                  "JNI_CreateJavaVM")) {
    return false;
  }
  if (!FindSymbol(reinterpret_cast<void**>(&JNI_GetCreatedJavaVMs_),
                  "JNI_GetCreatedJavaVMs")) {
    return false;
  }
  return true;
}
JniInvocation類的成員函數init所做的事情很簡單。它首先是讀取系統屬性persist.sys.dalvik.vm.lib的值。系統屬性persist.sys.dalvik.vm.lib的值要麼等於libdvm.so,要麼等於libart.so,這兩個so庫分別對應着Dalvik虛擬機和ART虛擬機環境。
在初始化完虛擬機環境後,接下來調用startVm()來創建虛擬機。
@/frameworks/base/core/jni/AndroidRuntime.cpp
/*
 * Start the Dalvik Virtual Machine.
 *
 * Various arguments, most determined by system properties, are passed in.
 * The "mOptions" vector is updated.
 *
 * Returns 0 on success.
 */
int AndroidRuntime::startVm(JavaVM** pJavaVM, JNIEnv** pEnv)
{
    int result = -1;
    JavaVMInitArgs initArgs;
    JavaVMOption opt;
    char propBuf[PROPERTY_VALUE_MAX];
    char stackTraceFileBuf[PROPERTY_VALUE_MAX];
    char dexoptFlagsBuf[PROPERTY_VALUE_MAX];
    char enableAssertBuf[sizeof("-ea:")-1 + PROPERTY_VALUE_MAX];
    char jniOptsBuf[sizeof("-Xjniopts:")-1 + PROPERTY_VALUE_MAX];
    char heapstartsizeOptsBuf[sizeof("-Xms")-1 + PROPERTY_VALUE_MAX];
    char heapsizeOptsBuf[sizeof("-Xmx")-1 + PROPERTY_VALUE_MAX];
    char heapgrowthlimitOptsBuf[sizeof("-XX:HeapGrowthLimit=")-1 + PROPERTY_VALUE_MAX];
    char heapminfreeOptsBuf[sizeof("-XX:HeapMinFree=")-1 + PROPERTY_VALUE_MAX];
    char heapmaxfreeOptsBuf[sizeof("-XX:HeapMaxFree=")-1 + PROPERTY_VALUE_MAX];
    char heaptargetutilizationOptsBuf[sizeof("-XX:HeapTargetUtilization=")-1 + PROPERTY_VALUE_MAX];
    char jitcodecachesizeOptsBuf[sizeof("-Xjitcodecachesize:")-1 + PROPERTY_VALUE_MAX];
    char extraOptsBuf[PROPERTY_VALUE_MAX];
    char* stackTraceFile = NULL;
    bool checkJni = false;
    bool checkDexSum = false;
    bool logStdio = false;
    enum {
      kEMDefault,
      kEMIntPortable,
      kEMIntFast,
      kEMJitCompiler,
    } executionMode = kEMDefault;


    property_get("dalvik.vm.checkjni", propBuf, "");
    if (strcmp(propBuf, "true") == 0) {
        checkJni = true;
    } else if (strcmp(propBuf, "false") != 0) {
        /* property is neither true nor false; fall back on kernel parameter */
        property_get("ro.kernel.android.checkjni", propBuf, "");
        if (propBuf[0] == '1') {
            checkJni = true;
        }
    }

    property_get("dalvik.vm.execution-mode", propBuf, "");
    if (strcmp(propBuf, "int:portable") == 0) {
        executionMode = kEMIntPortable;
    } else if (strcmp(propBuf, "int:fast") == 0) {
        executionMode = kEMIntFast;
    } else if (strcmp(propBuf, "int:jit") == 0) {
        executionMode = kEMJitCompiler;
    }

    property_get("dalvik.vm.stack-trace-file", stackTraceFileBuf, "");

    property_get("dalvik.vm.check-dex-sum", propBuf, "");
    if (strcmp(propBuf, "true") == 0) {
        checkDexSum = true;
    }

    property_get("log.redirect-stdio", propBuf, "");
    if (strcmp(propBuf, "true") == 0) {
        logStdio = true;
    }

    strcpy(enableAssertBuf, "-ea:");
    property_get("dalvik.vm.enableassertions", enableAssertBuf+4, "");

    strcpy(jniOptsBuf, "-Xjniopts:");
    property_get("dalvik.vm.jniopts", jniOptsBuf+10, "");

    /* route exit() to our handler */
    opt.extraInfo = (void*) runtime_exit;
    opt.optionString = "exit";
    mOptions.add(opt);

    /* route fprintf() to our handler */
    opt.extraInfo = (void*) runtime_vfprintf;
    opt.optionString = "vfprintf";
    mOptions.add(opt);

    /* register the framework-specific "is sensitive thread" hook */
    opt.extraInfo = (void*) runtime_isSensitiveThread;
    opt.optionString = "sensitiveThread";
    mOptions.add(opt);

    opt.extraInfo = NULL;

    /* enable verbose; standard options are { jni, gc, class } */
    //options[curOpt++].optionString = "-verbose:jni";
    opt.optionString = "-verbose:gc";
    mOptions.add(opt);
    //options[curOpt++].optionString = "-verbose:class";

    /*
     * The default starting and maximum size of the heap.  Larger
     * values should be specified in a product property override.
     */
    strcpy(heapstartsizeOptsBuf, "-Xms");
    property_get("dalvik.vm.heapstartsize", heapstartsizeOptsBuf+4, "4m");
    opt.optionString = heapstartsizeOptsBuf;
    mOptions.add(opt);
    strcpy(heapsizeOptsBuf, "-Xmx");
    property_get("dalvik.vm.heapsize", heapsizeOptsBuf+4, "16m");
    opt.optionString = heapsizeOptsBuf;
    mOptions.add(opt);

    // Increase the main thread's interpreter stack size for bug 6315322.
    opt.optionString = "-XX:mainThreadStackSize=24K";
    mOptions.add(opt);

    // Set the max jit code cache size.  Note: size of 0 will disable the JIT.
    strcpy(jitcodecachesizeOptsBuf, "-Xjitcodecachesize:");
    property_get("dalvik.vm.jit.codecachesize", jitcodecachesizeOptsBuf+19,  NULL);
    if (jitcodecachesizeOptsBuf[19] != '\0') {
      opt.optionString = jitcodecachesizeOptsBuf;
      mOptions.add(opt);
    }

    strcpy(heapgrowthlimitOptsBuf, "-XX:HeapGrowthLimit=");
    property_get("dalvik.vm.heapgrowthlimit", heapgrowthlimitOptsBuf+20, "");
    if (heapgrowthlimitOptsBuf[20] != '\0') {
        opt.optionString = heapgrowthlimitOptsBuf;
        mOptions.add(opt);
    }

    strcpy(heapminfreeOptsBuf, "-XX:HeapMinFree=");
    property_get("dalvik.vm.heapminfree", heapminfreeOptsBuf+16, "");
    if (heapminfreeOptsBuf[16] != '\0') {
        opt.optionString = heapminfreeOptsBuf;
        mOptions.add(opt);
    }

    strcpy(heapmaxfreeOptsBuf, "-XX:HeapMaxFree=");
    property_get("dalvik.vm.heapmaxfree", heapmaxfreeOptsBuf+16, "");
    if (heapmaxfreeOptsBuf[16] != '\0') {
        opt.optionString = heapmaxfreeOptsBuf;
        mOptions.add(opt);
    }

    strcpy(heaptargetutilizationOptsBuf, "-XX:HeapTargetUtilization=");
    property_get("dalvik.vm.heaptargetutilization", heaptargetutilizationOptsBuf+26, "");
    if (heaptargetutilizationOptsBuf[26] != '\0') {
        opt.optionString = heaptargetutilizationOptsBuf;
        mOptions.add(opt);
    }

    property_get("ro.config.low_ram", propBuf, "");
    if (strcmp(propBuf, "true") == 0) {
      opt.optionString = "-XX:LowMemoryMode";
      mOptions.add(opt);
    }

    /*
     * Enable or disable dexopt features, such as bytecode verification and
     * calculation of register maps for precise GC.
     */
    property_get("dalvik.vm.dexopt-flags", dexoptFlagsBuf, "");
    if (dexoptFlagsBuf[0] != '\0') {
        const char* opc;
        const char* val;

        opc = strstr(dexoptFlagsBuf, "v=");     /* verification */
        if (opc != NULL) {
            switch (*(opc+2)) {
            case 'n':   val = "-Xverify:none";      break;
            case 'r':   val = "-Xverify:remote";    break;
            case 'a':   val = "-Xverify:all";       break;
            default:    val = NULL;                 break;
            }

            if (val != NULL) {
                opt.optionString = val;
                mOptions.add(opt);
            }
        }

        opc = strstr(dexoptFlagsBuf, "o=");     /* optimization */
        if (opc != NULL) {
            switch (*(opc+2)) {
            case 'n':   val = "-Xdexopt:none";      break;
            case 'v':   val = "-Xdexopt:verified";  break;
            case 'a':   val = "-Xdexopt:all";       break;
            case 'f':   val = "-Xdexopt:full";      break;
            default:    val = NULL;                 break;
            }

            if (val != NULL) {
                opt.optionString = val;
                mOptions.add(opt);
            }
        }

        opc = strstr(dexoptFlagsBuf, "m=y");    /* register map */
        if (opc != NULL) {
            opt.optionString = "-Xgenregmap";
            mOptions.add(opt);

            /* turn on precise GC while we're at it */
            opt.optionString = "-Xgc:precise";
            mOptions.add(opt);
        }
    }

    /* enable debugging; set suspend=y to pause during VM init */
    /* use android ADB transport */
    opt.optionString =
        "-agentlib:jdwp=transport=dt_android_adb,suspend=n,server=y";
    mOptions.add(opt);

    ALOGD("CheckJNI is %s\n", checkJni ? "ON" : "OFF");
    if (checkJni) {
        /* extended JNI checking */
        opt.optionString = "-Xcheck:jni";
        mOptions.add(opt);

        /* set a cap on JNI global references */
        opt.optionString = "-Xjnigreflimit:2000";
        mOptions.add(opt);

        /* with -Xcheck:jni, this provides a JNI function call trace */
        //opt.optionString = "-verbose:jni";
        //mOptions.add(opt);
    }

    char lockProfThresholdBuf[sizeof("-Xlockprofthreshold:") + sizeof(propBuf)];
    property_get("dalvik.vm.lockprof.threshold", propBuf, "");
    if (strlen(propBuf) > 0) {
      strcpy(lockProfThresholdBuf, "-Xlockprofthreshold:");
      strcat(lockProfThresholdBuf, propBuf);
      opt.optionString = lockProfThresholdBuf;
      mOptions.add(opt);
    }

    /* Force interpreter-only mode for selected opcodes. Eg "1-0a,3c,f1-ff" */
    char jitOpBuf[sizeof("-Xjitop:") + PROPERTY_VALUE_MAX];
    property_get("dalvik.vm.jit.op", propBuf, "");
    if (strlen(propBuf) > 0) {
        strcpy(jitOpBuf, "-Xjitop:");
        strcat(jitOpBuf, propBuf);
        opt.optionString = jitOpBuf;
        mOptions.add(opt);
    }

    /* Force interpreter-only mode for selected methods */
    char jitMethodBuf[sizeof("-Xjitmethod:") + PROPERTY_VALUE_MAX];
    property_get("dalvik.vm.jit.method", propBuf, "");
    if (strlen(propBuf) > 0) {
        strcpy(jitMethodBuf, "-Xjitmethod:");
        strcat(jitMethodBuf, propBuf);
        opt.optionString = jitMethodBuf;
        mOptions.add(opt);
    }

    if (executionMode == kEMIntPortable) {
        opt.optionString = "-Xint:portable";
        mOptions.add(opt);
    } else if (executionMode == kEMIntFast) {
        opt.optionString = "-Xint:fast";
        mOptions.add(opt);
    } else if (executionMode == kEMJitCompiler) {
        opt.optionString = "-Xint:jit";
        mOptions.add(opt);
    }

    if (checkDexSum) {
        /* perform additional DEX checksum tests */
        opt.optionString = "-Xcheckdexsum";
        mOptions.add(opt);
    }

    if (logStdio) {
        /* convert stdout/stderr to log messages */
        opt.optionString = "-Xlog-stdio";
        mOptions.add(opt);
    }

    if (enableAssertBuf[4] != '\0') {
        /* accept "all" to mean "all classes and packages" */
        if (strcmp(enableAssertBuf+4, "all") == 0)
            enableAssertBuf[3] = '\0';
        ALOGI("Assertions enabled: '%s'\n", enableAssertBuf);
        opt.optionString = enableAssertBuf;
        mOptions.add(opt);
    } else {
        ALOGV("Assertions disabled\n");
    }

    if (jniOptsBuf[10] != '\0') {
        ALOGI("JNI options: '%s'\n", jniOptsBuf);
        opt.optionString = jniOptsBuf;
        mOptions.add(opt);
    }

    if (stackTraceFileBuf[0] != '\0') {
        static const char* stfOptName = "-Xstacktracefile:";

        stackTraceFile = (char*) malloc(strlen(stfOptName) +
            strlen(stackTraceFileBuf) +1);
        strcpy(stackTraceFile, stfOptName);
        strcat(stackTraceFile, stackTraceFileBuf);
        opt.optionString = stackTraceFile;
        mOptions.add(opt);
    }

    /* extra options; parse this late so it overrides others */
    property_get("dalvik.vm.extra-opts", extraOptsBuf, "");
    parseExtraOpts(extraOptsBuf);

    /* Set the properties for locale */
    {
        char langOption[sizeof("-Duser.language=") + 3];
        char regionOption[sizeof("-Duser.region=") + 3];
        strcpy(langOption, "-Duser.language=");
        strcpy(regionOption, "-Duser.region=");
        readLocale(langOption, regionOption);
        opt.extraInfo = NULL;
        opt.optionString = langOption;
        mOptions.add(opt);
        opt.optionString = regionOption;
        mOptions.add(opt);
    }

    /*
     * We don't have /tmp on the device, but we often have an SD card.  Apps
     * shouldn't use this, but some test suites might want to exercise it.
     */
    opt.optionString = "-Djava.io.tmpdir=/sdcard";
    mOptions.add(opt);

    initArgs.version = JNI_VERSION_1_4;
    initArgs.options = mOptions.editArray();
    initArgs.nOptions = mOptions.size();
    initArgs.ignoreUnrecognized = JNI_FALSE;

    /*
     * Initialize the VM.
     *
     * The JavaVM* is essentially per-process, and the JNIEnv* is per-thread.
     * If this call succeeds, the VM is ready, and we can start issuing
     * JNI calls.
     */
    if (JNI_CreateJavaVM(pJavaVM, pEnv, &initArgs) < 0) {
        ALOGE("JNI_CreateJavaVM failed\n");
        goto bail;
    }

    result = 0;

bail:
    free(stackTraceFile);
    return result;
}
可以看出這個函數的絕大部分都是在設置Java虛擬機的各項參數,沒有什麼好說。看到下面這一段變量定義,不知道大家有沒有去思考過,這裏爲什麼用PROPERTY_VALUE_MAX作爲初始大小?
    char propBuf[PROPERTY_VALUE_MAX];
    char stackTraceFileBuf[PROPERTY_VALUE_MAX];
    char dexoptFlagsBuf[PROPERTY_VALUE_MAX];
    char enableAssertBuf[sizeof("-ea:")-1 + PROPERTY_VALUE_MAX];
    char jniOptsBuf[sizeof("-Xjniopts:")-1 + PROPERTY_VALUE_MAX];
    char heapstartsizeOptsBuf[sizeof("-Xms")-1 + PROPERTY_VALUE_MAX];
    char heapsizeOptsBuf[sizeof("-Xmx")-1 + PROPERTY_VALUE_MAX];
    char heapgrowthlimitOptsBuf[sizeof("-XX:HeapGrowthLimit=")-1 + PROPERTY_VALUE_MAX];
    char heapminfreeOptsBuf[sizeof("-XX:HeapMinFree=")-1 + PROPERTY_VALUE_MAX];
    char heapmaxfreeOptsBuf[sizeof("-XX:HeapMaxFree=")-1 + PROPERTY_VALUE_MAX];
    char heaptargetutilizationOptsBuf[sizeof("-XX:HeapTargetUtilization=")-1 + PROPERTY_VALUE_MAX];
    char jitcodecachesizeOptsBuf[sizeof("-Xjitcodecachesize:")-1 + PROPERTY_VALUE_MAX];
下面是PROPERTY_VALUE_MAX的定義:
@system/core/include/cutils/properties.h
/* System properties are *small* name value pairs managed by the
** property service.  If your data doesn't fit in the provided
** space it is not appropriate for a system property.
**
** WARNING: system/bionic/include/sys/system_properties.h also defines
**          these, but with different names.  (TODO: fix that)
*/
#define PROPERTY_KEY_MAX   PROP_NAME_MAX
#define PROPERTY_VALUE_MAX  PROP_VALUE_MAX
所以,沒錯,PROPERTY_VALUE_MAX是Android中屬性value的最大長度,而java虛擬機的這些參數都是通過Android屬性賦值和控制的,所以他們的值得大小肯定不能超過屬性的最大長度。下面是我的小米2S手機中的一部分Java參數。Android中所有屬性都可以通過getprop命令來查看。
[dalvik.vm.heapconcurrentstart]: [2097152]
[dalvik.vm.heapgrowthlimit]: [96m]
[dalvik.vm.heapidealfree]: [8388608]
[dalvik.vm.heapsize]: [384m]
[dalvik.vm.heapstartsize]: [8m]
[dalvik.vm.heaputilization]: [0.25]
[dalvik.vm.stack-trace-file]: [/data/anr/traces.txt]
下面來看一下startVm()中的最後幾句:
    /*
     * Initialize the VM.
     *
     * The JavaVM* is essentially per-process, and the JNIEnv* is per-thread.
     * If this call succeeds, the VM is ready, and we can start issuing
     * JNI calls.
     */
    if (JNI_CreateJavaVM(pJavaVM, pEnv, &initArgs) < 0) {
        ALOGE("JNI_CreateJavaVM failed\n");
        goto bail;
    }
startVm()在最後會調用JNI_CreateJavaVM()來創建虛擬機。這裏順便看一下JNI_CreateJavaVM()的這段說明:”Java虛擬機對象JavaVm對象每個進程有一個,JNI環境變量JNIEnv每個線程有一個“。這裏也告訴我們,在寫JNI代碼時要注意:JNIEnv不能在任意線程中使用,必須是原本就是Java線程(Java代碼通過JNI調用native代碼時,發起調用的那個肯定是Java線程),或者是讓已有的native線程通過JNI來attach到Java環境。具體這裏不做詳細介紹,感興趣的讀者可以參考Oracle官方文檔http://docs.oracle.com/javase/6/docs/technotes/guides/jni/spec/jniTOC.html。在JNI_CreateJavaVM()調用成功後虛擬機VM就已經創建好了,接下來就可以進行JNI相關調用了。

註冊JNI函數

創建好了虛擬機,接下來要給虛擬機註冊一些JNI函數。不知道各位讀者有沒有想過,這裏爲什麼要註冊JNI函數呢?沒錯,因爲在基於虛擬機的Java世界裏,Java並不是萬能的,它用到的很多方法(例如:音頻、視頻相關、Binder等)都需要以native的方式實現,而這些方法就需要虛擬機以JNI的方式進行加載。
@/frameworks/base/core/jni/AndroidRuntime.cpp
/*
 * Register android native functions with the VM.
 */
/*static*/ int AndroidRuntime::startReg(JNIEnv* env)
{
    /*
     * This hook causes all future threads created in this process to be
     * attached to the JavaVM.  (This needs to go away in favor of JNI
     * Attach calls.)
     */
<span style="white-space:pre">	</span>//設置Thread類的線程創建函數爲javaCreateThreadEtc
    androidSetCreateThreadFunc((android_create_thread_fn) javaCreateThreadEtc);


    ALOGV("--- registering native functions ---\n");


    /*
     * Every "register" function calls one or more things that return
     * a local reference (e.g. FindClass).  Because we haven't really
     * started the VM yet, they're all getting stored in the base frame
     * and never released.  Use Push/Pop to manage the storage.
     */
    env->PushLocalFrame(200);


    if (register_jni_procs(gRegJNI, NELEM(gRegJNI), env) < 0) {
        env->PopLocalFrame(NULL);
        return -1;
    }
    env->PopLocalFrame(NULL);


    //createJavaThread("fubar", quickTest, (void*) "hello");


    return 0;
}
我們來看一下register_jni_procs()的代碼:
static int register_jni_procs(const RegJNIRec array[], size_t count, JNIEnv* env)
{
    for (size_t i = 0; i < count; i++) {
        if (array[i].mProc(env) < 0) {
#ifndef NDEBUG
            ALOGD("----------!!! %s failed to load\n", array[i].mName);
#endif
            return -1;
        }
    }
    return 0;
}
看一下從startReg()傳過來的參數gRegJNI:
static const RegJNIRec gRegJNI[] = {
    REG_JNI(register_android_debug_JNITest),
    REG_JNI(register_com_android_internal_os_RuntimeInit),
    REG_JNI(register_android_os_SystemClock),
    REG_JNI(register_android_util_EventLog),
    REG_JNI(register_android_util_Log),
    REG_JNI(register_android_util_FloatMath),
    REG_JNI(register_android_text_format_Time),
    REG_JNI(register_android_content_AssetManager),
    REG_JNI(register_android_content_StringBlock),
    REG_JNI(register_android_content_XmlBlock),
    REG_JNI(register_android_emoji_EmojiFactory),
    REG_JNI(register_android_text_AndroidCharacter),
    REG_JNI(register_android_text_AndroidBidi),
    REG_JNI(register_android_view_InputDevice),
    REG_JNI(register_android_view_KeyCharacterMap),
    REG_JNI(register_android_os_Process),
    REG_JNI(register_android_os_SystemProperties),
    REG_JNI(register_android_os_Binder),
    REG_JNI(register_android_os_Parcel),
    REG_JNI(register_android_view_DisplayEventReceiver),
    REG_JNI(register_android_nio_utils),
    REG_JNI(register_android_graphics_Graphics),
    REG_JNI(register_android_view_GraphicBuffer),
    REG_JNI(register_android_view_GLES20DisplayList),
    REG_JNI(register_android_view_GLES20Canvas),
    REG_JNI(register_android_view_HardwareRenderer),
    REG_JNI(register_android_view_Surface),
    REG_JNI(register_android_view_SurfaceControl),
    REG_JNI(register_android_view_SurfaceSession),
    REG_JNI(register_android_view_TextureView),
    REG_JNI(register_com_google_android_gles_jni_EGLImpl),
    REG_JNI(register_com_google_android_gles_jni_GLImpl),
    REG_JNI(register_android_opengl_jni_EGL14),
    REG_JNI(register_android_opengl_jni_EGLExt),
    REG_JNI(register_android_opengl_jni_GLES10),
    REG_JNI(register_android_opengl_jni_GLES10Ext),
    REG_JNI(register_android_opengl_jni_GLES11),
    REG_JNI(register_android_opengl_jni_GLES11Ext),
    REG_JNI(register_android_opengl_jni_GLES20),
    REG_JNI(register_android_opengl_jni_GLES30),

    REG_JNI(register_android_graphics_Bitmap),
    REG_JNI(register_android_graphics_BitmapFactory),
    REG_JNI(register_android_graphics_BitmapRegionDecoder),
    REG_JNI(register_android_graphics_Camera),
    REG_JNI(register_android_graphics_CreateJavaOutputStreamAdaptor),
    REG_JNI(register_android_graphics_Canvas),
    REG_JNI(register_android_graphics_ColorFilter),
    REG_JNI(register_android_graphics_DrawFilter),
    REG_JNI(register_android_graphics_Interpolator),
    REG_JNI(register_android_graphics_LayerRasterizer),
    REG_JNI(register_android_graphics_MaskFilter),
    REG_JNI(register_android_graphics_Matrix),
    REG_JNI(register_android_graphics_Movie),
    REG_JNI(register_android_graphics_NinePatch),
    REG_JNI(register_android_graphics_Paint),
    REG_JNI(register_android_graphics_Path),
    REG_JNI(register_android_graphics_PathMeasure),
    REG_JNI(register_android_graphics_PathEffect),
    REG_JNI(register_android_graphics_Picture),
    REG_JNI(register_android_graphics_PorterDuff),
    REG_JNI(register_android_graphics_Rasterizer),
    REG_JNI(register_android_graphics_Region),
    REG_JNI(register_android_graphics_Shader),
    REG_JNI(register_android_graphics_SurfaceTexture),
    REG_JNI(register_android_graphics_Typeface),
    REG_JNI(register_android_graphics_Xfermode),
    REG_JNI(register_android_graphics_YuvImage),
    REG_JNI(register_android_graphics_pdf_PdfDocument),

    REG_JNI(register_android_database_CursorWindow),
    REG_JNI(register_android_database_SQLiteConnection),
    REG_JNI(register_android_database_SQLiteGlobal),
    REG_JNI(register_android_database_SQLiteDebug),
    REG_JNI(register_android_os_Debug),
    REG_JNI(register_android_os_FileObserver),
    REG_JNI(register_android_os_FileUtils),
    REG_JNI(register_android_os_MessageQueue),
    REG_JNI(register_android_os_SELinux),
    REG_JNI(register_android_os_Trace),
    REG_JNI(register_android_os_UEventObserver),
    REG_JNI(register_android_net_LocalSocketImpl),
    REG_JNI(register_android_net_NetworkUtils),
    REG_JNI(register_android_net_TrafficStats),
    REG_JNI(register_android_net_wifi_WifiNative),
    REG_JNI(register_android_os_MemoryFile),
    REG_JNI(register_com_android_internal_os_ZygoteInit),
    REG_JNI(register_android_hardware_Camera),
    REG_JNI(register_android_hardware_camera2_CameraMetadata),
    REG_JNI(register_android_hardware_SensorManager),
    REG_JNI(register_android_hardware_SerialPort),
    REG_JNI(register_android_hardware_UsbDevice),
    REG_JNI(register_android_hardware_UsbDeviceConnection),
    REG_JNI(register_android_hardware_UsbRequest),
    REG_JNI(register_android_media_AudioRecord),
    REG_JNI(register_android_media_AudioSystem),
    REG_JNI(register_android_media_AudioTrack),
    REG_JNI(register_android_media_JetPlayer),
    REG_JNI(register_android_media_RemoteDisplay),
    REG_JNI(register_android_media_ToneGenerator),

    REG_JNI(register_android_opengl_classes),
    REG_JNI(register_android_server_NetworkManagementSocketTagger),
    REG_JNI(register_android_server_Watchdog),
    REG_JNI(register_android_ddm_DdmHandleNativeHeap),
    REG_JNI(register_android_backup_BackupDataInput),
    REG_JNI(register_android_backup_BackupDataOutput),
    REG_JNI(register_android_backup_FileBackupHelperBase),
    REG_JNI(register_android_backup_BackupHelperDispatcher),
    REG_JNI(register_android_app_backup_FullBackup),
    REG_JNI(register_android_app_ActivityThread),
    REG_JNI(register_android_app_NativeActivity),
    REG_JNI(register_android_view_InputChannel),
    REG_JNI(register_android_view_InputEventReceiver),
    REG_JNI(register_android_view_InputEventSender),
    REG_JNI(register_android_view_InputQueue),
    REG_JNI(register_android_view_KeyEvent),
    REG_JNI(register_android_view_MotionEvent),
    REG_JNI(register_android_view_PointerIcon),
    REG_JNI(register_android_view_VelocityTracker),

    REG_JNI(register_android_content_res_ObbScanner),
    REG_JNI(register_android_content_res_Configuration),

    REG_JNI(register_android_animation_PropertyValuesHolder),
    REG_JNI(register_com_android_internal_content_NativeLibraryHelper),
    REG_JNI(register_com_android_internal_net_NetworkStatsFactory),
};
REG_JNI是系統定義的一個宏:
#ifdef NDEBUG
    #define REG_JNI(name)      { name }
    struct RegJNIRec {
        int (*mProc)(JNIEnv*);
    };
#else
    #define REG_JNI(name)      { name, #name }
    struct RegJNIRec {
        int (*mProc)(JNIEnv*);
        const char* mName;
    };
#endif
以gRegJNI數組中的一項爲例,REG_JNI(register_android_debug_JNITest) 展開REG_JNI後變爲:
{ register_android_debug_JNITest, "register_android_debug_JNITest" }
所以當register_jni_procs()中調用mProcess時,最終調用的是android_debug_JNITest類中的register_android_debug_JNITest:
int register_android_debug_JNITest(JNIEnv* env)
{
    return jniRegisterNativeMethods(env, "android/debug/JNITest",
        gMethods, NELEM(gMethods));
}

到這裏JNI註冊就講完了。

ZygoteInit初始化

在JNI註冊完成後,讓我們再回頭繼續看AndroidRuntime中start函數:
env->CallStaticVoidMethod(startClass, startMeth, strArray);//通過JNI調用main()方法
在start()中通過JNI調用ZygoteInit類的main()方法,這個main()方法即使從native世界到Java世界的入口。
@/frameworks/base/core/java/com/android/internal/os/ZygoteInit.java
    public static void main(String argv[]) {
        try {
            // Start profiling the zygote initialization.
            SamplingProfilerIntegration.start();//啓動性能統計

            registerZygoteSocket();//註冊zygote用的socket
            EventLog.writeEvent(LOG_BOOT_PROGRESS_PRELOAD_START,
                SystemClock.uptimeMillis());
            preload();//初始化,主要進行framework中一些類和資源的預加載
            EventLog.writeEvent(LOG_BOOT_PROGRESS_PRELOAD_END,
                SystemClock.uptimeMillis());

            // Finish profiling the zygote initialization.
            SamplingProfilerIntegration.writeZygoteSnapshot();//結束統計並生成結果文件

            // Do an initial gc to clean up after startup
            gc();//強制進行一次回收

            // Disable tracing so that forked processes do not inherit stale tracing tags from
            // Zygote.
            Trace.setTracingEnabled(false);

            // If requested, start system server directly from Zygote
            if (argv.length != 2) {
                throw new RuntimeException(argv[0] + USAGE_STRING);
            }

            if (argv[1].equals("start-system-server")) {
                startSystemServer();//啓動system_server進程
            } else if (!argv[1].equals("")) {
                throw new RuntimeException(argv[0] + USAGE_STRING);
            }

            Log.i(TAG, "Accepting command socket connections");

            runSelectLoop();//變成守護進程,接收socket信息進行處理

            closeServerSocket();
        } catch (MethodAndArgsCaller caller) {
            caller.run();
        } catch (RuntimeException ex) {
            Log.e(TAG, "Zygote died with exception", ex);
            closeServerSocket();
            throw ex;
        }
    }
簡單總結一下ZygoteInit類中main()函數主要做了如下幾件事:
  1. 註冊Zygote用的socket
  2. 類和資源的預加載
  3. 啓動system_server進程
  4. 進入一個死循環,等待接收和處理socket事件
接下來將對它們一一進行分析。

registerZygoteSocket()方法

registerZygoteSocket()方法的實現如下:
    /**
     * Registers a server socket for zygote command connections
     *
     * @throws RuntimeException when open fails
     */
    private static void registerZygoteSocket() {
        if (sServerSocket == null) {
            int fileDesc;
            try {
                String env = System.getenv(ANDROID_SOCKET_ENV);//從環境變量中獲取socket的fd
                fileDesc = Integer.parseInt(env);
            } catch (RuntimeException ex) {
                throw new RuntimeException(
                        ANDROID_SOCKET_ENV + " unset or invalid", ex);
            }

            try {
                sServerSocket = new LocalServerSocket(
                        createFileDescriptor(fileDesc));
            } catch (IOException ex) {
                throw new RuntimeException(
                        "Error binding to local socket '" + fileDesc + "'", ex);
            }
        }
    }
registerZygoteSocket()方法比較簡單,就是創建了一個服務端Socket。

類和資源的預加載

在Zygote中通過preload()方法完成類和資源的加載,它的實現如下:

    static void preload() {
        preloadClasses();//加載類
        preloadResources();//加載資源
        preloadOpenGL();//加載OpenGL
    }
先看一下preloadClasses():

   /**
     * Performs Zygote process initialization. Loads and initializes
     * commonly used classes.
     *
     * Most classes only cause a few hundred bytes to be allocated, but
     * a few will allocate a dozen Kbytes (in one case, 500+K).
     */
    private static void preloadClasses() {
        final VMRuntime runtime = VMRuntime.getRuntime();

        InputStream is = ClassLoader.getSystemClassLoader().getResourceAsStream(
                PRELOADED_CLASSES);//加載preloaded-classes這個文件中定義的需要預加載的類
        if (is == null) {
            Log.e(TAG, "Couldn't find " + PRELOADED_CLASSES + ".");
        } else {
            Log.i(TAG, "Preloading classes...");
            long startTime = SystemClock.uptimeMillis();

            // Drop root perms while running static initializers.
            setEffectiveGroup(UNPRIVILEGED_GID);
            setEffectiveUser(UNPRIVILEGED_UID);

            // Alter the target heap utilization.  With explicit GCs this
            // is not likely to have any effect.
            float defaultUtilization = runtime.getTargetHeapUtilization();
            runtime.setTargetHeapUtilization(0.8f);

            // Start with a clean slate.
            System.gc();
            runtime.runFinalizationSync();
            Debug.startAllocCounting();

            try {
                BufferedReader br
                    = new BufferedReader(new InputStreamReader(is), 256);

                int count = 0;
                String line;
                while ((line = br.readLine()) != null) {
                    // Skip comments and blank lines.
                    line = line.trim();
                    if (line.startsWith("#") || line.equals("")) {
                        continue;
                    }

                    try {
                        if (false) {
                            Log.v(TAG, "Preloading " + line + "...");
                        }
                        Class.forName(line);//以反射的方式加載類
                        if (Debug.getGlobalAllocSize() > PRELOAD_GC_THRESHOLD) {
                            if (false) {
                                Log.v(TAG,
                                    " GC at " + Debug.getGlobalAllocSize());
                            }
                            System.gc();
                            runtime.runFinalizationSync();
                            Debug.resetGlobalAllocSize();
                        }
                        count++;
                    } catch (ClassNotFoundException e) {
                        Log.w(TAG, "Class not found for preloading: " + line);
                    } catch (Throwable t) {
                        Log.e(TAG, "Error preloading " + line + ".", t);
                        if (t instanceof Error) {
                            throw (Error) t;
                        }
                        if (t instanceof RuntimeException) {
                            throw (RuntimeException) t;
                        }
                        throw new RuntimeException(t);
                    }
                }

                Log.i(TAG, "...preloaded " + count + " classes in "
                        + (SystemClock.uptimeMillis()-startTime) + "ms.");
            } catch (IOException e) {
                Log.e(TAG, "Error reading " + PRELOADED_CLASSES + ".", e);
            } finally {
                IoUtils.closeQuietly(is);
                // Restore default.
                runtime.setTargetHeapUtilization(defaultUtilization);

                // Fill in dex caches with classes, fields, and methods brought in by preloading.
                runtime.preloadDexCaches();

                Debug.stopAllocCounting();

                // Bring back root. We'll need it later.
                setEffectiveUser(ROOT_UID);
                setEffectiveGroup(ROOT_GID);
            }
        }
    }
preloadClasses()的實現很簡單,這裏說一下preloaded-classes文件:

# Classes which are preloaded by com.android.internal.os.ZygoteInit.
# Automatically generated by frameworks/base/tools/preload/WritePreloadedClassFile.java.
# MIN_LOAD_TIME_MICROS=1250
# MIN_PROCESSES=10
android.R$styleable
android.accounts.Account
android.accounts.Account$1
android.accounts.AccountManager
android.accounts.AccountManager$12
android.accounts.AccountManager$13
android.accounts.AccountManager$6
android.accounts.AccountManager$AmsTask
android.accounts.AccountManager$AmsTask$1
android.accounts.AccountManager$AmsTask$Response
在Android4.4的源代碼中有2782行,也就說這裏在系統啓動時需要預加載兩千多個類,而這僅僅是源代碼,在手機廠商的代碼中,需要進行預加載的類的數量將會超過這個數。preloaded-classes文件時由WritePreloadedClassFile類生成的。WritePreloadedClassFile將某個類加入預加載文件preloaded-classes中的條件時:該類被不少於10個進程使用,並且家中該類好使超過1250微秒。WritePreloadedClassFile裏面的實現非常簡單,感興趣的讀者可以自行閱讀。

    /**
     * Preload any class that take longer to load than MIN_LOAD_TIME_MICROS us.
     */
    static final int MIN_LOAD_TIME_MICROS = 1250;

    /**
     * Preload any class that was loaded by at least MIN_PROCESSES processes.
     */
    static final int MIN_PROCESSES = 10;

這裏我簡單估算了一下,在Android4.4中預加載這些類需要4秒鐘作用,這對於系統啓動來說是一個比較長的時間,因此在進行系統啓動速度的優化時,這裏可以作爲一個優化大點。

在看preloadClass的代碼時有些讀者看的setEffectiveUser的幾句代碼不明白什麼意思:

    private static void preloadClasses() {
    		......
            // Drop root perms while running static initializers.
            setEffectiveGroup(UNPRIVILEGED_GID);
            setEffectiveUser(UNPRIVILEGED_UID);
            ......
            } finally {
            	......
                // Bring back root. We'll need it later.
                setEffectiveUser(ROOT_UID);
                setEffectiveGroup(ROOT_GID);
            }
        }
    }
以setEffectiveUser爲例看一下它的實現:

    /**
     * Sets effective user ID.
     */
    private static void setEffectiveUser(int uid) {
        int errno = setreuid(ROOT_UID, uid);
        if (errno != 0) {
            Log.e(TAG, "setreuid() failed. errno: " + errno);
        }
    }
    /**
     * The Linux syscall "setreuid()"
     * @param ruid real uid
     * @param euid effective uid
     * @return 0 on success, non-zero errno on fail
     */
    static native int setreuid(int ruid, int euid);
可以看出這裏setEffectiveUser這幾句的意思是:在類加載之前臨時降低euid(真實用戶ID)權限,加載完成後恢復。關於Linux各種userid的說明如下:

有效用戶ID

有效用戶IDEffective UID,即EUID)與有效用戶組IDEffective Group ID,即EGID)在創建與訪問文件的時候發揮作用;具體來說,創建文件時,系統內核將根據創建文件的進程的EUID與EGID設定文件的所有者/組屬性,而在訪問文件時,內核亦根據訪問進程的EUID與EGID決定其能否訪問文件。

真實用戶ID

真實用戶IDReal UID,即RUID)與真實用戶組IDReal GID,即RGID)用於辨識進程的真正所有者,且會影響到進程發送信號的權限。沒有超級用戶權限的進程僅在其RUID與目標進程的RUID相匹配時才能向目標進程發送信號,例如在父子進程間,子進程父進程處繼承了認證信息,使得父子進程間可以互相發送信號。

暫存用戶ID

暫存用戶IDSaved UID,即SUID)於以提升權限運行的進程暫時需要做一些不需特權的操作時使用,這種情況下進程會暫時將自己的有效用戶ID從特權用戶(常爲root)對應的UID變爲某個非特權用戶對應的UID,而後將原有的特權用戶UID複製爲SUID暫存;之後當進程完成不需特權的操作後,進程使用SUID的值重置EUID以重新獲得特權。在這裏需要說明的是,無特權進程的EUID值只能設爲與RUID、SUID與EUID(也即不改變)之一相同的值。

文件系統用戶ID

文件系統用戶IDFile System UID,即FSUID)在Linux中使用,且只用於對文件系統的訪問權限控制,在沒有明確設定的情況下與EUID相同(若FSUID爲root的UID,則SUID、RUID與EUID必至少有一亦爲root的UID),且EUID改變也會影響到FSUID。設立FSUID是爲了允許程序(如NFS服務器)在不需獲取向給定UID賬戶發送信號的情況下以給定UID的權限來限定自己的文件系統權限。

這段代碼轉自http://zh.wikipedia.org/wiki/%E7%94%A8%E6%88%B7ID

那這裏這樣做的用意何在?我猜這裏是爲了保證預加載的類是所有的用戶都是可用的。


預加載資源的代碼如下:

   /**
     * Load in commonly used resources, so they can be shared across
     * processes.
     *
     * These tend to be a few Kbytes, but are frequently in the 20-40K
     * range, and occasionally even larger.
     */
    private static void preloadResources() {
        final VMRuntime runtime = VMRuntime.getRuntime();

        Debug.startAllocCounting();
        try {
            System.gc();
            runtime.runFinalizationSync();
            mResources = Resources.getSystem();
            mResources.startPreloading();
            if (PRELOAD_RESOURCES) {
                Log.i(TAG, "Preloading resources...");

                long startTime = SystemClock.uptimeMillis();
                TypedArray ar = mResources.obtainTypedArray(
                        com.android.internal.R.array.preloaded_drawables);
                int N = preloadDrawables(runtime, ar);//預加載Drawable
                ar.recycle();
                Log.i(TAG, "...preloaded " + N + " resources in "
                        + (SystemClock.uptimeMillis()-startTime) + "ms.");

                startTime = SystemClock.uptimeMillis();
                ar = mResources.obtainTypedArray(
                        com.android.internal.R.array.preloaded_color_state_lists);
                N = preloadColorStateLists(runtime, ar);//預加載Color
                ar.recycle();
                Log.i(TAG, "...preloaded " + N + " resources in "
                        + (SystemClock.uptimeMillis()-startTime) + "ms.");
            }
            mResources.finishPreloading();
        } catch (RuntimeException e) {
            Log.w(TAG, "Failure preloading resources", e);
        } finally {
            Debug.stopAllocCounting();
        }
    }
preloadResources的加載過程又分爲加載Drawable和加載Color。

除了加載類和資源,還會加載OpenGL的一些東西:

    private static void preloadOpenGL() {
        if (!SystemProperties.getBoolean(PROPERTY_DISABLE_OPENGL_PRELOADING, false)) {
            EGL14.eglGetDisplay(EGL14.EGL_DEFAULT_DISPLAY);
        }
    }

在創建socket和資源加載前後有這麼兩句:

            // Start profiling the zygote initialization.
            SamplingProfilerIntegration.start();//啓動性能統計

            registerZygoteSocket();//註冊zygote用的socket
            EventLog.writeEvent(LOG_BOOT_PROGRESS_PRELOAD_START,
                SystemClock.uptimeMillis());
            preload();//初始化,主要進行framework中一些類和資源的預加載
            EventLog.writeEvent(LOG_BOOT_PROGRESS_PRELOAD_END,
                SystemClock.uptimeMillis());

            // Finish profiling the zygote initialization.
            SamplingProfilerIntegration.writeZygoteSnapshot();//結束統計並生成結果文件
所以,這裏SamplingProfilerIntegration統計的是創建socket和類及資源初始化的時間。

啓動system_server

    /**
     * Prepare the arguments and fork for the system server process.
     */
    private static boolean startSystemServer()
            throws MethodAndArgsCaller, RuntimeException {
        long capabilities = posixCapabilitiesAsBits(
            OsConstants.CAP_KILL,
            OsConstants.CAP_NET_ADMIN,
            OsConstants.CAP_NET_BIND_SERVICE,
            OsConstants.CAP_NET_BROADCAST,
            OsConstants.CAP_NET_RAW,
            OsConstants.CAP_SYS_MODULE,
            OsConstants.CAP_SYS_NICE,
            OsConstants.CAP_SYS_RESOURCE,
            OsConstants.CAP_SYS_TIME,
            OsConstants.CAP_SYS_TTY_CONFIG
        );
        /* Hardcoded command line to start the system server */
        String args[] = {
            "--setuid=1000",
            "--setgid=1000",
            "--setgroups=1001,1002,1003,1004,1005,1006,1007,1008,1009,1010,1018,1032,3001,3002,3003,3006,3007",
            "--capabilities=" + capabilities + "," + capabilities,
            "--runtime-init",
            "--nice-name=system_server",
            "com.android.server.SystemServer",
        };
        ZygoteConnection.Arguments parsedArgs = null;

        int pid;

        try {
            parsedArgs = new ZygoteConnection.Arguments(args);
            ZygoteConnection.applyDebuggerSystemProperty(parsedArgs);
            ZygoteConnection.applyInvokeWithSystemProperty(parsedArgs);

            /* Request to fork the system server process */
            pid = Zygote.forkSystemServer(//以fork的方式創建system_server進程
                    parsedArgs.uid, parsedArgs.gid,
                    parsedArgs.gids,
                    parsedArgs.debugFlags,
                    null,
                    parsedArgs.permittedCapabilities,
                    parsedArgs.effectiveCapabilities);
        } catch (IllegalArgumentException ex) {
            throw new RuntimeException(ex);
        }

        /* For child process */
        if (pid == 0) {//pid==0說明在子進程中,父進程爲Zygote
            handleSystemServerProcess(parsedArgs);
        }

        return true;
    }
這裏前面的一大段代碼主要是在爲fork準備參數parsedArgs,然後Zygote會forkSystemServer來創建system_server,forkSystemServer()方法最終會調用Linux中的fork()。

runSelectLoop()方法

在創建system_server後,Zygote調用runSelectLoop()進入到一個死循環中:

    /**
     * Runs the zygote process's select loop. Accepts new connections as
     * they happen, and reads commands from connections one spawn-request's
     * worth at a time.
     *
     * @throws MethodAndArgsCaller in a child process when a main() should
     * be executed.
     */
    private static void runSelectLoop() throws MethodAndArgsCaller {
        ArrayList<FileDescriptor> fds = new ArrayList<FileDescriptor>();
        ArrayList<ZygoteConnection> peers = new ArrayList<ZygoteConnection>();
        FileDescriptor[] fdArray = new FileDescriptor[4];

        fds.add(sServerSocket.getFileDescriptor());//registerZygoteSocket中創建的socket的描述符
        peers.add(null);

        int loopCount = GC_LOOP_COUNT;
        while (true) {//死循環
            int index;//selectReadable方法監控的句柄的下標(fdArray中的下標)

            /*
             * Call gc() before we block in select().
             * It's work that has to be done anyway, and it's better
             * to avoid making every child do it.  It will also
             * madvise() any free memory as a side-effect.
             *
             * Don't call it every time, because walking the entire
             * heap is a lot of overhead to free a few hundred bytes.
             */
            if (loopCount <= 0) {//Zygote每循環GC_LOOP_COUNT(這裏的值是10)次就會進行一次內存回收
                gc();
                loopCount = GC_LOOP_COUNT;
            } else {
                loopCount--;
            }


            try {
                fdArray = fds.toArray(fdArray);
                index = selectReadable(fdArray);//內部由select()實現,在沒有客戶端事件時會堵塞
            } catch (IOException ex) {
                throw new RuntimeException("Error in select()", ex);
            }

            if (index < 0) {
                throw new RuntimeException("Error in select()");
            } else if (index == 0) {//index==0表示selcet接收到的是Zygote的socket的事件
                ZygoteConnection newPeer = acceptCommandPeer();
                peers.add(newPeer);
                fds.add(newPeer.getFileDesciptor());
            } else {//調用ZygoteConnection對象的runOnce方法,ZygoteConnection是在index == 0時被添加到peers的
                boolean done;
                done = peers.get(index).runOnce();

                if (done) {
                    peers.remove(index);
                    fds.remove(index);
                }
            }
        }
    }

下面是selcetReadable方法的代碼:

    /**
     * Invokes select() on the provider array of file descriptors (selecting
     * for readability only). Array elements of null are ignored.
     *
     * @param fds non-null; array of readable file descriptors
     * @return index of descriptor that is now readable or -1 for empty array.
     * @throws IOException if an error occurs
     */
    static native int selectReadable(FileDescriptor[] fds) throws IOException;
selectReadable的native實現在com_android_internal_os_ZygoteInit.cpp中。
Zygote接收到socket客戶端的鏈接後會將其(客戶端Socket)保存到一個ZygoteConnection對象中,然後保存到peers

    /**
     * Waits for and accepts a single command connection. Throws
     * RuntimeException on failure.
     */
    private static ZygoteConnection acceptCommandPeer() {
        try {
            return new ZygoteConnection(sServerSocket.accept());
        } catch (IOException ex) {
            throw new RuntimeException(
                    "IOException during accept()", ex);
        }
    }
最後,客戶端的請求會有ZygoteConnection的runOnce來處理。


發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章