MTD學習報告004

 

接着看s3c2410_nand_add_partition(), 這是重點,

Drivers/mtd/nand/s3c2410.c:

static int s3c2410_nand_add_partition(struct s3c2410_nand_info *info,

                                  struct s3c2410_nand_mtd *mtd,

                                  struct s3c2410_nand_set *set)

{

       if (set == NULL)

              return add_mtd_device(&mtd->mtd);

 

       if (set->nr_partitions > 0 && set->partitions != NULL) {

              return add_mtd_partitions(&mtd->mtd,

                                     set->partitions,

                                     set->nr_partitions);

       }

 

       return add_mtd_device(&mtd->mtd);

}

由上面的分析可知, 這裏調的是add_mtd_partitions().

這個函數相對也比較長, 我們一段段的看.

Drivers/mtd/mtdpart.c:

int add_mtd_partitions(struct mtd_info *master,

                         const struct mtd_partition *parts,

                         int nbparts)

{

       struct mtd_part *slave;

       u_int32_t cur_offset = 0;

       int i;

 

       printk (KERN_NOTICE "Creating %d MTD partitions on /"%s/":/n", nbparts, master->name);

 

    /*爲每個partition初始化*/

/*這裏的mtd就是面向應用層的那個了*/

       for (i = 0; i < nbparts; i++) {

 

              /* allocate the partition structure */

        /*每個partition都有個專門的對象來代表它們*/

              slave = kmalloc (sizeof(*slave), GFP_KERNEL);

              if (!slave) {

                     printk ("memory allocation error while creating partitions for /"%s/"/n",

                            master->name);

                     del_mtd_partitions(master);

                     return -ENOMEM;

              }

              memset(slave, 0, sizeof(*slave));

              list_add(&slave->list, &mtd_partitions);   /*每個partition都添加到partition列表中去*/

 

              /* set up the MTD object for this partition */

        /*初始化每個partition的各種屬性,包括回調函數*/

              slave->mtd.type = master->type;

              slave->mtd.flags = master->flags & ~parts[i].mask_flags;

              slave->mtd.size = parts[i].size;  /*partition的大小,可參考前面的分區信息*/

              slave->mtd.oobblock = master->oobblock;

              slave->mtd.oobsize = master->oobsize;

              slave->mtd.ecctype = master->ecctype;

              slave->mtd.eccsize = master->eccsize;

 

              slave->mtd.name = parts[i].name; /*partition的名字,可參考前面的分區信息*/

              slave->mtd.bank_size = master->bank_size;

              slave->mtd.owner = master->owner;

       

        /*初始化對該partition的各種操作函數*/

              slave->mtd.read = part_read;  /*對該partition的讀函數*/

              slave->mtd.write = part_write;  /*對該partition的寫函數*/

              if(master->point && master->unpoint){

                     slave->mtd.point = part_point;

                     slave->mtd.unpoint = part_unpoint;

              }

             

              if (master->read_ecc)

                     slave->mtd.read_ecc = part_read_ecc;

              if (master->write_ecc)

                     slave->mtd.write_ecc = part_write_ecc;

              if (master->read_oob)

                     slave->mtd.read_oob = part_read_oob;

              if (master->write_oob)

                     slave->mtd.write_oob = part_write_oob;

              if(master->read_user_prot_reg)

                     slave->mtd.read_user_prot_reg = part_read_user_prot_reg;

              if(master->read_fact_prot_reg)

                     slave->mtd.read_fact_prot_reg = part_read_fact_prot_reg;

              if(master->write_user_prot_reg)

                     slave->mtd.write_user_prot_reg = part_write_user_prot_reg;

              if (master->sync)

                     slave->mtd.sync = part_sync;

              if (!i && master->suspend && master->resume) {

                            slave->mtd.suspend = part_suspend;

                            slave->mtd.resume = part_resume;

              }

              if (master->writev)

                     slave->mtd.writev = part_writev;

              if (master->readv)

                     slave->mtd.readv = part_readv;

              if (master->writev_ecc)

                     slave->mtd.writev_ecc = part_writev_ecc;

              if (master->readv_ecc)

                     slave->mtd.readv_ecc = part_readv_ecc;

              if (master->lock)

                     slave->mtd.lock = part_lock;

              if (master->unlock)

                     slave->mtd.unlock = part_unlock;

              if (master->block_isbad)

                     slave->mtd.block_isbad = part_block_isbad;

              if (master->block_markbad)

                     slave->mtd.block_markbad = part_block_markbad;

              slave->mtd.erase = part_erase;

 

……..

}

接着看剩下的代碼:

Drivers/mtd/mtdpart.c:

int add_mtd_partitions(struct mtd_info *master,

                         const struct mtd_partition *parts,

                         int nbparts)

{

…….

        /*初始化其他一些參數*/

              slave->master = master;   //這裏的master就是上面分析的那個

/*partition在整個設備上的offset,可參看前面的partition的分區信息, 以後對該partition的操作都是在這段區域內進行的*/

              slave->offset = parts[i].offset;     

slave->index = i;

 

              if (slave->offset == MTDPART_OFS_APPEND)

                     slave->offset = cur_offset;

              if (slave->offset == MTDPART_OFS_NXTBLK) {

                     u_int32_t emask = master->erasesize-1;

                     slave->offset = (cur_offset + emask) & ~emask;

                     if (slave->offset != cur_offset) {

                            printk(KERN_NOTICE "Moving partition %d: "

                                   "0x%08x -> 0x%08x/n", i,

                                   cur_offset, slave->offset);

                     }

              }

              if (slave->mtd.size == MTDPART_SIZ_FULL)

                     slave->mtd.size = master->size - slave->offset;

              cur_offset = slave->offset + slave->mtd.size;

      

              printk (KERN_NOTICE "0x%08x-0x%08x : /"%s/"/n", slave->offset,

                     slave->offset + slave->mtd.size, slave->mtd.name);

 

              /* let's do some sanity checks */

        /*調整參數*/

              if (slave->offset >= master->size) {

                            /* let's register it anyway to preserve ordering */

                     slave->offset = 0;

                     slave->mtd.size = 0;

                     printk ("mtd: partition /"%s/" is out of reach -- disabled/n",

                            parts[i].name);

              }

        /*調整partition大小, 因爲有時候可能我們分區的時候出錯了*/

              if (slave->offset + slave->mtd.size > master->size) {

                     slave->mtd.size = master->size - slave->offset;

                     printk ("mtd: partition /"%s/" extends beyond the end of device /"%s/" -- size truncated to %#x/n",

                            parts[i].name, master->name, slave->mtd.size);

              }

              if (master->numeraseregions>1) {

                     /* Deal with variable erase size stuff */

                     int i;

                     struct mtd_erase_region_info *regions = master->eraseregions;

                    

                     /* Find the first erase regions which is part of this partition. */

                     for (i=0; i < master->numeraseregions && slave->offset >= regions[i].offset; i++)

                            ;

 

                     for (i--; i < master->numeraseregions && slave->offset + slave->mtd.size > regions[i].offset; i++) {

                            if (slave->mtd.erasesize < regions[i].erasesize) {

                                   slave->mtd.erasesize = regions[i].erasesize;

                            }

                     }

              } else {

                     /* Single erase size */

                     slave->mtd.erasesize = master->erasesize;

              }

        /*初始化partition的各種屬性*/

              if ((slave->mtd.flags & MTD_WRITEABLE) &&

                  (slave->offset % slave->mtd.erasesize)) {

                     /* Doesn't start on a boundary of major erase size */

                     /* FIXME: Let it be writable if it is on a boundary of _minor_ erase size though */

                     slave->mtd.flags &= ~MTD_WRITEABLE;

                     printk ("mtd: partition /"%s/" doesn't start on an erase block boundary -- force read-only/n",

                            parts[i].name);

              }

              if ((slave->mtd.flags & MTD_WRITEABLE) &&

                  (slave->mtd.size % slave->mtd.erasesize)) {

                     slave->mtd.flags &= ~MTD_WRITEABLE;

                     printk ("mtd: partition /"%s/" doesn't end on an erase block -- force read-only/n",

                            parts[i].name);

              }

 

              /* copy oobinfo from master */

              memcpy(&slave->mtd.oobinfo, &master->oobinfo, sizeof(slave->mtd.oobinfo));

 

              if(parts[i].mtdp)

              {     /* store the object pointer (caller may or may not register it */

                     *parts[i].mtdp = &slave->mtd;

                     slave->registered = 0;

              }

              else

              {

                     /* register our partition */

                     add_mtd_device(&slave->mtd);   /*最後把MTD註冊進系統*/

                     slave->registered = 1;

              }

       }

       return 0;

}

    OK, 這個函數主要就是爲每個partition分配一個代表該partition的對象MTD(即面向上層應用的那個MTD), 並把該mtd註冊進系統中去, 即讓上層應用能看到並使用這個設備.

下面我們在看add_mtd_device()

Drivers/mtd/mtdcore.c:

int add_mtd_device(struct mtd_info *mtd)

{

       int i;

 

       down(&mtd_table_mutex);

 

       for (i=0; i < MAX_MTD_DEVICES; i++)  

              if (!mtd_table[i]) {   /*獲取列表中的一個空閒項*/

                     struct list_head *this;

            /*把我們的mtd保存在該列表項中去*/

                     mtd_table[i] = mtd;

                     mtd->index = i;

                     mtd->usecount = 0;

 

                     DEBUG(0, "mtd: Giving out device %d to %s/n",i, mtd->name);

                     /* No need to get a refcount on the module containing

                        the notifier, since we hold the mtd_table_mutex */

             /*通知每個notifier有一個mtd設備註冊了*/

                     list_for_each(this, &mtd_notifiers) {

                            struct mtd_notifier *not = list_entry(this, struct mtd_notifier, list);

                            not->add(mtd);  /*調notifyadd回調函數*/

                     }

                    

                     up(&mtd_table_mutex);

                     /* We _know_ we aren't being removed, because

                        our caller is still holding us here. So none

                        of this try_ nonsense, and no bitching about it

                        either. :) */

                     __module_get(THIS_MODULE);

                     return 0;

              }

      

       up(&mtd_table_mutex);

       return 1;

}

mtd_table[]保存了系統中存在的mtd設備的一個列表, 這個函數就是把代表一個partitionMTD保存到系統的一個全局MTD列表中去, 並調用每個notifieradd回調函數, 以通知他們有個MTD設備註冊了.

好的,接下來就是要講解notifier的回調函數了, 還記得notifier是在什麼時候註冊的嗎? 呵呵, mtdchar, mtdblock在初始化的時候都有註冊notifier, 我們在回顧下:

Drivers/mtd/mtdchar.c:

static struct mtd_notifier notifier = {  /*mtdchar notifier*/

       .add = mtd_notify_add,  

       .remove  = mtd_notify_remove,

};

 

static inline void mtdchar_devfs_init(void)

{

       devfs_mk_dir("mtd");

       register_mtd_user(&notifier);   /*這裏就是註冊notifier*/

}

同樣在看mtdblock:

Drivers/mtd/mtd_blkdevs.c:

static struct mtd_notifier blktrans_notifier = {

       .add = blktrans_notify_add,

       .remove = blktrans_notify_remove,

};

 

int register_mtd_blktrans(struct mtd_blktrans_ops *tr)

{

       int ret, i;

 

       /* Register the notifier if/when the first device type is

          registered, to prevent the link/init ordering from fucking

          us over. */

       if (!blktrans_notifier.list.next)

              register_mtd_user(&blktrans_notifier);  /*這裏就是註冊notifier*/

…..

}

下面我們就以block爲例講解.

Drivers/mtd/mtd_blkdevs.c:

static void blktrans_notify_add(struct mtd_info *mtd)

{

       struct list_head *this;

 

       if (mtd->type == MTD_ABSENT)

              return;

 

       list_for_each(this, &blktrans_majors) {

              struct mtd_blktrans_ops *tr = list_entry(this, struct mtd_blktrans_ops, list);

 

              tr->add_mtd(tr, mtd);  /*幹事實的函數*/

       }

 

}

這個函數只是一個幌子, 真正幹實事的是tr->add_mtd(tr, mtd);   mtd_blktrans_ops對象也是在mtdblock初始化的時候設置好的, 具體請看前面的分析, 這裏就是調用mtdblock_add_mtd:

Drivers/mtd/mtdblock.c:

static void mtdblock_add_mtd(struct mtd_blktrans_ops *tr, struct mtd_info *mtd)

{

    /*分配一個代表MTD block的設備*/

       struct mtd_blktrans_dev *dev = kmalloc(sizeof(*dev), GFP_KERNEL);  

 

       if (!dev)

              return;

 

       memset(dev, 0, sizeof(*dev));

     /*初始化這個設備*/

       dev->mtd = mtd;

       dev->devnum = mtd->index;

       dev->blksize = 512;

       dev->size = mtd->size >> 9;

       dev->tr = tr;

 

       if (!(mtd->flags & MTD_WRITEABLE))

              dev->readonly = 1;

 

       add_mtd_blktrans_dev(dev);   /*添加到系統中去*/

}

核心函數還是add_mtd_blktrans_dev, 我們接着看:

Drivers/mtd/mtd_blkdevs.c:

int add_mtd_blktrans_dev(struct mtd_blktrans_dev *new)

{

       struct mtd_blktrans_ops *tr = new->tr;

       struct list_head *this;

       int last_devnum = -1;

       struct gendisk *gd;

 

       if (!down_trylock(&mtd_table_mutex)) {

              up(&mtd_table_mutex);

              BUG();

       }

   

    /*首先是爲新設備獲取設備號*/

       list_for_each(this, &tr->devs) {

              struct mtd_blktrans_dev *d = list_entry(this, struct mtd_blktrans_dev, list);

              if (new->devnum == -1) {

                     /* Use first free number */

                     if (d->devnum != last_devnum+1) {

                            /* Found a free devnum. Plug it in here */

                            new->devnum = last_devnum+1;

                            list_add_tail(&new->list, &d->list);

                            goto added;

                     }

              } else if (d->devnum == new->devnum) {

                     /* Required number taken */

                     return -EBUSY;

              } else if (d->devnum > new->devnum) {

                     /* Required number was free */

                     list_add_tail(&new->list, &d->list);

                     goto added;

              }

              last_devnum = d->devnum;

       }

       if (new->devnum == -1)

              new->devnum = last_devnum+1;

 

       if ((new->devnum << tr->part_bits) > 256) {

              return -EBUSY;

       }

 

       init_MUTEX(&new->sem);

       list_add_tail(&new->list, &tr->devs);   /*把該設備鏈入tr中去*/

 added:

       if (!tr->writesect)

              new->readonly = 1;

     /*以下是block驅動方面的東西了*/

       gd = alloc_disk(1 << tr->part_bits);   /*block設備分配對象,*/

       if (!gd) {

              list_del(&new->list);

              return -ENOMEM;

       }

       gd->major = tr->major;  /*主設備號*/

       gd->first_minor = (new->devnum) << tr->part_bits;   /*次設備號*/

       gd->fops = &mtd_blktrans_ops;  /*設備操作集*/

      

       snprintf(gd->disk_name, sizeof(gd->disk_name),

               "%s%c", tr->name, (tr->part_bits?'a':'0') + new->devnum);

       snprintf(gd->devfs_name, sizeof(gd->devfs_name),

               "%s/%c", tr->name, (tr->part_bits?'a':'0') + new->devnum);

 

       /* 2.5 has capacity in units of 512 bytes while still

          having BLOCK_SIZE_BITS set to 10. Just to keep us amused. */

       set_capacity(gd, (new->size * new->blksize) >> 9);

 

       gd->private_data = new;

       new->blkcore_priv = gd;

       gd->queue = tr->blkcore_priv->rq;

 

       if (new->readonly)

              set_disk_ro(gd, 1);

 

       add_disk(gd);   /*block設備添加入系統, 創建設備文件*/

      

       return 0;

}

這個函數涉及到了block驅動的編寫, 可參考相關文檔, 該函數主要就是完成mtd block設備的上層設備文件的創建及和具體的設備操作函數集關聯起來.

Drivers/mtd/mtd_blkdevs.c:

struct block_device_operations mtd_blktrans_ops = {

       .owner           = THIS_MODULE,

       .open             = blktrans_open,

       .release   = blktrans_release,

       .ioctl              = blktrans_ioctl,

};

當用戶層open我們的mtd設備時, 會調用blktrans_open函數.

 

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章