二. 回調函數

什麼是回調函數?

  簡而言之,回調函數就是一個通過函數指針調用的函數。如果你把函數的指針(地址)作爲參數傳遞給另一個函數,當這個指針被用爲調用它所指向的函數時,我們就說這是回調函數。

  爲什麼要使用回調函數?

  因爲可以把調用者與被調用者分開。調用者不關心誰是被調用者,所有它需知道的,只是存在一個具有某種特定原型、某些限制條件(如返回值爲int)的被調用函數。

  如果想知道回調函數在實際中有什麼作用,先假設有這樣一種情況,我們要編寫一個庫,它提供了某些排序算法的實現,如冒泡排序、快速排序、shell排序、shake排序等等,但爲使庫更加通用,不想在函數中嵌入排序邏輯,而讓使用者來實現相應的邏輯;或者,想讓庫可用於多種數據類型(int、float、string),此時,該怎麼辦呢?可以使用函數指針,並進行回調。

  回調可用於通知機制,例如,有時要在程序中設置一個計時器,每到一定時間,程序會得到相應的通知,但通知機制的實現者對我們的程序一無所知。而此時,就需有一個特定原型的函數指針,用這個指針來進行回調,來通知我們的程序事件已經發生。實際上,SetTimer() API使用了一個回調函數來通知計時器,而且,萬一沒有提供回調函數,它還會把一個消息發往程序的消息隊列。

  另一個使用回調機制的API函數是EnumWindow(),它枚舉屏幕上所有的頂層窗口,爲每個窗口調用一個程序提供的函數,並傳遞窗口的處理程序。如果被調用者返回一個值,就繼續進行迭代,否則,退出。EnumWindow()並不關心被調用者在何處,也不關心被調用者用它傳遞的處理程序做了什麼,它只關心返回值,因爲基於返回值,它將繼續執行或退出。

  不管怎麼說,回調函數是繼續自C語言的,因而,在C++中,應只在與C代碼建立接口,或與已有的回調接口打交道時,才使用回調函數。除了上述情況,在C++中應使用虛擬方法或函數符(functor)既(),而不是回調函數。

  一個簡單的回調函數實現

  下面創建了一個sort.dll的動態鏈接庫,它導出了一個名爲CompareFunction的類型--typedef int (__stdcall *CompareFunction)(const byte*, const byte*),它就是回調函數的類型。另外,它也導出了兩個方法:Bubblesort()和Quicksort(),這兩個方法原型相同,但實現了不同的排序算法。

void DLLDIR __stdcall Bubblesort(byte* array,int size,int elem_size,CompareFunction cmpFunc);

void DLLDIR __stdcall Quicksort(byte* array,int size,int elem_size,CompareFunction cmpFunc);


  這兩個函數接受以下參數:

  ·byte * array:指向元素數組的指針(任意類型)。

  ·int size:數組中元素的個數。

  ·int elem_size:數組中一個元素的大小,以字節爲單位。

  ·CompareFunction cmpFunc:帶有上述原型的指向回調函數的指針。

  這兩個函數的會對數組進行某種排序,但每次都需決定兩個元素哪個排在前面,而函數中有一個回調函數,其地址是作爲一個參數傳遞進來的。對編寫者來說,不必介意函數在何處實現,或它怎樣被實現的,所需在意的只是兩個用於比較的元素的地址,並返回以下的某個值(庫的編寫者和使用者都必須遵守這個約定):

  ·-1:如果第一個元素較小,那它在已排序好的數組中,應該排在第二個元素前面。

  ·0:如果兩個元素相等,那麼它們的相對位置並不重要,在已排序好的數組中,誰在前面都無所謂。

  ·1:如果第一個元素較大,那在已排序好的數組中,它應該排第二個元素後面。

  基於以上約定,函數Bubblesort()的實現如下,Quicksort()就稍微複雜一點:

void DLLDIR __stdcall Bubblesort(byte* array,int size,int elem_size,CompareFunction cmpFunc)
{
 for(int i=0; i < size; i++)
 {
  for(int j=0; j < size-1; j++)
  {
   //回調比較函數
   if(1 == (*cmpFunc)(array+j*elem_size,array+(j+1)*elem_size))
   {
    //兩個相比較的元素相交換
    byte* temp = new byte[elem_size];
    memcpy(temp, array+j*elem_size, elem_size);
    memcpy(array+j*elem_size,array+(j+1)*elem_size,elem_size);
    memcpy(array+(j+1)*elem_size, temp, elem_size);
    delete [] temp;
   }
  }
 }
}


  注意:因爲實現中使用了memcpy(),所以函數在使用的數據類型方面,會有所侷限。

  對使用者來說,必須有一個回調函數,其地址要傳遞給Bubblesort()函數。下面有二個簡單的示例,一個比較兩個整數,而另一個比較兩個字符串:

int __stdcall CompareInts(const byte* velem1, const byte* velem2)
{
 int elem1 = *(int*)velem1;
 int elem2 = *(int*)velem2;

 if(elem1 < elem2)
  return -1;
 if(elem1 > elem2)
  return 1;

 return 0;
}

int __stdcall CompareStrings(const byte* velem1, const byte* velem2)
{
 const char* elem1 = (char*)velem1;
 const char* elem2 = (char*)velem2;
 return strcmp(elem1, elem2);
}


  下面另有一個程序,用於測試以上所有的代碼,它傳遞了一個有5個元素的數組給Bubblesort()和Quicksort(),同時還傳遞了一個指向回調函數的指針。

int main(int argc, char* argv[])
{
 int i;
 int array[] = {5432, 4321, 3210, 2109, 1098};

 cout << "Before sorting ints with Bubblesort/n";
 for(i=0; i < 5; i++)
  cout << array[i] << '/n';

 Bubblesort((byte*)array, 5, sizeof(array[0]), &CompareInts);

 cout << "After the sorting/n";
 for(i=0; i < 5; i++)
  cout << array[i] << '/n';

 const char str[5][10] = {"estella","danielle","crissy","bo","angie"};

 cout << "Before sorting strings with Quicksort/n";
 for(i=0; i < 5; i++)
  cout << str[i] << '/n';

 Quicksort((byte*)str, 5, 10, &CompareStrings);

 cout << "After the sorting/n";
 for(i=0; i < 5; i++)
  cout << str[i] << '/n';

 return 0;
}


  如果想進行降序排序(大元素在先),就只需修改回調函數的代碼,或使用另一個回調函數,這樣編程起來靈活性就比較大了。

調用約定

  上面的代碼中,可在函數原型中找到__stdcall,因爲它以雙下劃線打頭,所以它是一個特定於編譯器的擴展,說到底也就是微軟的實現。任何支持開發基於Win32的程序都必須支持這個擴展或其等價物。以__stdcall標識的函數使用了標準調用約定,爲什麼叫標準約定呢,因爲所有的Win32 API(除了個別接受可變參數的除外)都使用它。標準調用約定的函數在它們返回到調用者之前,都會從堆棧中移除掉參數,這也是Pascal的標準約定。但在C/C++中,調用約定是調用者負責清理堆棧,而不是被調用函數;爲強制函數使用C/C++調用約定,可使用__cdecl。另外,可變參數函數也使用C/C++調用約定。

  Windows操作系統採用了標準調用約定(Pascal約定),因爲其可減小代碼的體積。這點對早期的Windows來說非常重要,因爲那時它運行在只有640KB內存的電腦上。

  如果你不喜歡__stdcall,還可以使用CALLBACK宏,它定義在windef.h中:

#define CALLBACK __stdcallor

#define CALLBACK PASCAL //而PASCAL在此被#defined成__stdcall

  作爲回調函數的C++方法

  因爲平時很可能會使用到C++編寫代碼,也許會想到把回調函數寫成類中的一個方法,但先來看看以下的代碼:

class CCallbackTester
{
 public:
 int CALLBACK CompareInts(const byte* velem1, const byte* velem2);
};

Bubblesort((byte*)array, 5, sizeof(array[0]),
&CCallbackTester::CompareInts);

  如果使用微軟的編譯器,將會得到下面這個編譯錯誤:

error C2664: 'Bubblesort' : cannot convert parameter 4 from 'int (__stdcall CCallbackTester::*)(const unsigned char *,const unsigned char *)' to 'int (__stdcall *)(const unsigned char *,const unsigned char *)' There is no context in which this conversion is possible

  這是因爲非靜態成員函數有一個額外的參數:this指針,這將迫使你在成員函數前面加上static。當然,還有幾種方法可以解決這個問題,但限於篇幅,就不再論述了。

 

 

回調函數

如果參數是一個函數指針,調用者可以傳遞一個函數的地址給實現者,讓實現者去調用它,這稱爲回調函數(Callback Function)。例如qsort(3)bsearch(3)

回調函數示例:void func(void (*f)(void *), void *p);

調用者實現者

提供一個回調函數,再提供一個準備傳給回調函數的參數。

把回調函數傳給參數f,把準備傳給回調函數的參數按void *類型傳給參數p

在適當的時候根據調用者傳來的函數指針f調用回調函數,將調用者傳來的參數p轉交給回調函數,即調用f(p);

以下是一個簡單的例子。實現了一個repeat_three_times函數,可以把調用者傳來的任何回調函數連續執行三次。

例 24.7. 回調函數

/* para_callback.h */
#ifndef PARA_CALLBACK_H
#define PARA_CALLBACK_H

typedef void (*callback_t)(void *);
extern void repeat_three_times(callback_t, void *);

#endif
/* para_callback.c */
#include "para_callback.h"

void repeat_three_times(callback_t f, void *para)
{
     f(para);
     f(para);
     f(para);
}
/* main.c */
#include <stdio.h>
#include "para_callback.h"

void say_hello(void *str)
{
     printf("Hello %s/n", (const char *)str);
}

void count_numbers(void *num)
{
     int i;
     for(i=1; i<=(int)num; i++)
	  printf("%d ", i);
     putchar('/n');
}

int main(void)
{
     repeat_three_times(say_hello, "Guys");
     repeat_three_times(count_numbers, (void *)4);
     return 0;
}

回顧一下前面幾節的例子,參數類型都是由實現者規定的。而本例中回調函數的參數按什麼類型解釋由調用者規定,對於實現者來說就是一個void *指針,實現者只負責將這個指針轉交給回調函數,而不關心它到底指向什麼數據類型。調用者知道自己傳的參數是char *型的,那麼在自己提供的回調函數中就應該知道參數要轉換成char *型來解釋

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章