Android源碼學習 Handler、Looper和MessageQueue

源碼使用Android Q

知識儲備

知道Handler是幹什麼的,怎麼使用的就可以了,如果不會可以看度娘。

獲取Handler的方法

以下方法爲Google官方文檔提供的說明

構造方法 說明
Handler() 默認構造函數將Handler與當前線程的Looper關聯。
Handler(Handler.Callback callback) 構造函數將Handler與當前線程的Looper關聯,並接受一個回調接口,在該接口中可以處理消息。
Handler(Looper looper) 使用傳入的Looper
Handler(Looper looper, Handler.Callback callback) 結合2、3

Handler源碼

構造方法
public Handler() {
        this(null, false);
}

public Handler(@Nullable Callback callback) {
        this(callback, false);
}

public Handler(@NonNull Looper looper) {
        this(looper, null, false);
}

public Handler(@NonNull Looper looper, @Nullable Callback callback) {
        this(looper, callback, false);
}

前兩個構造方法調用了以下方法:

    public Handler(@Nullable Callback callback, boolean async) {
        if (FIND_POTENTIAL_LEAKS) {
            final Class<? extends Handler> klass = getClass();
            if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&
                    (klass.getModifiers() & Modifier.STATIC) == 0) {
                Log.w(TAG, "The following Handler class should be static or leaks might occur: " +
                    klass.getCanonicalName());
            }
        }

        mLooper = Looper.myLooper();//說明1
        if (mLooper == null) {
            throw new RuntimeException(
                "Can't create handler inside thread " + Thread.currentThread()
                        + " that has not called Looper.prepare()");
        }
        mQueue = mLooper.mQueue;
        mCallback = callback;
        mAsynchronous = async;
    }

構造方法裏說明1處獲取了Looper,然後創建了隊列。

後面兩個構造方法則使用了構造時提供的方法

    public Handler(@NonNull Looper looper, @Nullable Callback callback, boolean async) {
        mLooper = looper;
        mQueue = looper.mQueue;
        mCallback = callback;
        mAsynchronous = async;
    }

這個就不多說了。

以上我們可以瞭解到Handler創建時綁定了Looper。

SendMessage方法

//1
public final boolean sendMessage(@NonNull Message msg) {
        return sendMessageDelayed(msg, 0);
    }
//2
public final boolean sendMessageDelayed(@NonNull Message msg, long delayMillis) {
        if (delayMillis < 0) {
            delayMillis = 0;
        }
        return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
    }
//3
public boolean sendMessageAtTime(@NonNull Message msg, long uptimeMillis) {
        MessageQueue queue = mQueue;
        if (queue == null) {
            RuntimeException e = new RuntimeException(
                    this + " sendMessageAtTime() called with no mQueue");
            Log.w("Looper", e.getMessage(), e);
            return false;
        }
        return enqueueMessage(queue, msg, uptimeMillis);
    }

第一步:調用下一個方法,忽略

第二部:設置默認delayMillis,調用下一個方法

第三步:獲取當前的MessageQueue,然後將當前消息入列調用 enqueueMessage方法

    private boolean enqueueMessage(@NonNull MessageQueue queue, @NonNull Message msg,
            long uptimeMillis) {
        msg.target = this;
        msg.workSourceUid = ThreadLocalWorkSource.getUid();

        if (mAsynchronous) {
            msg.setAsynchronous(true);
        }
        return queue.enqueueMessage(msg, uptimeMillis);
    }

上述代碼關鍵點:

1、msg的target設置爲this(當前Handler)

2、設置workSouceUid

3、將當前msg加入MessageQueue裏

Post方法

//1 
public final boolean post(@NonNull Runnable r) {
       return  sendMessageDelayed(getPostMessage(r), 0);
    }
//2
//第二部之後和sendMessage方法相同

post方法其實和sendMessage一樣,只不過是調用了getPostMessage將Runnable包裝成Message

private static Message getPostMessage(Runnable r) {
        Message m = Message.obtain();
        m.callback = r;
        return m;
    }

Handler的方法到此就差不多了,接下來看看Looper的。

獲取Looper的方法

獲取方法 說明
getMainLooper() 返回應用程序的主looper,它位於應用程序的主線程中。
prepare() 初始化當前線程的Looper

getMainLooper

    public static Looper getMainLooper() {
        synchronized (Looper.class) {
            return sMainLooper;
        }
    }

一個App只有一個主線程,也就意味着只有一個主線程Looper。主線程的Looper是App啓動的時候創建的。

prepare

//1 
public static void prepare() {
        prepare(true);
    }
//2
private static void prepare(boolean quitAllowed) {
        if (sThreadLocal.get() != null) {
            throw new RuntimeException("Only one Looper may be created per thread");
        }
        sThreadLocal.set(new Looper(quitAllowed));
    }
//3
private Looper(boolean quitAllowed) {
        mQueue = new MessageQueue(quitAllowed);
        mThread = Thread.currentThread();
    }

通過prepare方法可以發現:

1、一個線程只有一個Looper在2代碼裏進行了限制

2、Looper在構造方法裏創建mQueue,也就是mQueue實在Looper裏構建的

loop

    public static void loop() {
        final Looper me = myLooper();//1
        if (me == null) {
            throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
        }
        final MessageQueue queue = me.mQueue;
        ...

        for (;;) {
            Message msg = queue.next(); // 2
            if (msg == null) {
                // No message indicates that the message queue is quitting.
                return;
            }
            ...
            try {
                msg.target.dispatchMessage(msg);//3
                if (observer != null) {
                    observer.messageDispatched(token, msg);
                }
                dispatchEnd = needEndTime ? SystemClock.uptimeMillis() : 0;
            } catch (Exception exception) {
                if (observer != null) {
                    observer.dispatchingThrewException(token, msg, exception);
                }
                throw exception;
            } finally {
                ThreadLocalWorkSource.restore(origWorkSource);
                if (traceTag != 0) {
                    Trace.traceEnd(traceTag);
                }
            }
            ...
            msg.recycleUnchecked();
        }
    }

loop方法調用需要注意以下幾點

1、當前線程必須有Looper綁定

2、調用MessageQueue的next方法拿到隊列中的msg

3、msg.target.dispatchMessage(msg),最終調用handler的dispathchMessage方法

先看看MessageQueue的next方法

Message next() {
        final long ptr = mPtr;
        if (ptr == 0) {
            return null;
        }

        int pendingIdleHandlerCount = -1; // -1 only during first iteration
        int nextPollTimeoutMillis = 0;
        for (;;) {
            if (nextPollTimeoutMillis != 0) {
                Binder.flushPendingCommands();
            }

            nativePollOnce(ptr, nextPollTimeoutMillis);//1

            synchronized (this) {
                // Try to retrieve the next message.  Return if found.
                final long now = SystemClock.uptimeMillis();
                Message prevMsg = null;
                Message msg = mMessages;
                if (msg != null && msg.target == null) {
                    // Stalled by a barrier.  Find the next asynchronous message in the queue.
                    do {
                        prevMsg = msg;
                        msg = msg.next;
                    } while (msg != null && !msg.isAsynchronous());
                }
                if (msg != null) {
                    if (now < msg.when) {
                        // Next message is not ready.  Set a timeout to wake up when it is ready.
                        nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
                    } else {
                        // Got a message.
                        mBlocked = false;
                        if (prevMsg != null) {
                            prevMsg.next = msg.next;
                        } else {
                            mMessages = msg.next;
                        }
                        msg.next = null;
                        if (DEBUG) Log.v(TAG, "Returning message: " + msg);
                        msg.markInUse();
                        return msg;
                    }
                } else {
                    // No more messages.
                    nextPollTimeoutMillis = -1;
                }
        }
    }

這裏最重要的就是nativePollOnce(ptr, nextPollTimeoutMillis);這個native方法

1、如果nextPollTimeoutMillis=-1,一直阻塞不會超時。

2、如果nextPollTimeoutMillis=0,不會阻塞,立即返回。

3、如果nextPollTimeoutMillis>0,最長阻塞nextPollTimeoutMillis毫秒(超時),如果期間有程序喚醒會立即返回。

nativePollOnce關鍵源碼
int eventCount = epoll_wait(mEpollFd, eventItems, EPOLL_MAX_EVENTS, timeoutMillis);

Java層的阻塞是通過native層的epoll監聽文件描述符的寫入事件來實現的

再來看看入棧方法

    boolean enqueueMessage(Message msg, long when) {
        if (msg.target == null) {
            throw new IllegalArgumentException("Message must have a target.");
        }
        if (msg.isInUse()) {
            throw new IllegalStateException(msg + " This message is already in use.");
        }

        synchronized (this) {
            if (mQuitting) {
                IllegalStateException e = new IllegalStateException(
                        msg.target + " sending message to a Handler on a dead thread");
                Log.w(TAG, e.getMessage(), e);
                msg.recycle();
                return false;
            }

            msg.markInUse();
            msg.when = when;
            Message p = mMessages;
            boolean needWake;
            if (p == null || when == 0 || when < p.when) {
                // New head, wake up the event queue if blocked.
                msg.next = p;
                mMessages = msg;
                needWake = mBlocked;
            } else {
                // Inserted within the middle of the queue.  Usually we don't have to wake
                // up the event queue unless there is a barrier at the head of the queue
                // and the message is the earliest asynchronous message in the queue.
                needWake = mBlocked && p.target == null && msg.isAsynchronous();
                Message prev;
                for (;;) {
                    prev = p;
                    p = p.next;
                    if (p == null || when < p.when) {
                        break;
                    }
                    if (needWake && p.isAsynchronous()) {
                        needWake = false;
                    }
                }
                msg.next = p; // invariant: p == prev.next
                prev.next = msg;
            }

            // We can assume mPtr != 0 because mQuitting is false.
            if (needWake) {
                nativeWake(mPtr);
            }
        }
        return true;
    }

以上代碼可以得出兩個結論

1、MessageQueue是一個單列表

2、有消息插入時會調用nativeWake方法

3、入隊是根據時間戳的順序入隊的

nativeWake關鍵源碼

ssize_t nWrite = TEMP_FAILURE_RETRY(write(mWakeEventFd, &inc, sizeof(uint64_t)));

nativeWake調用write文件寫入方法,重點是write(mWakeEventFd, &inc, sizeof(uint64_t)),寫入了一個inc,這個時候epoll就能監聽到事件,也就被喚醒了

下面看看Handler的dispatchMessage源碼

    public void dispatchMessage(@NonNull Message msg) {
        if (msg.callback != null) {
            handleCallback(msg);
        } else {
            if (mCallback != null) {
                if (mCallback.handleMessage(msg)) {
                    return;
                }
            }
            handleMessage(msg);
        }
    }

調用了我們最初傳進來的Msg的Runnable,最終回調了我們自己寫的處理方法

獲取Message的方法

獲取方法 說明
Message.obtain Message提供的默認實例獲取方法(使用msg池緩存推薦使用)

Message.obtain()源碼

public static Message obtain() {
    synchronized (sPoolSync) {
        if (sPool != null) {
            Message m = sPool;
            sPool = m.next;
            m.next = null;
            m.flags = 0; // clear in-use flag
            sPoolSize--;
            return m;
        }
    }
    return new Message();
}

這裏維護了一個Message的池,使用一個單鏈表,我們用過的message進過recycle方法就會進入這個池加以複用,如果池裏沒有Msg就會new一個

總結

1、創建Handler時綁定了Looper,主線程使用默認的Looper,其他線程需要調用prepare或者使用主線程的Looper

2、調用Handler的sendMessage或者post方法時,設置msg的target爲自己,然後將消息加入messageQueue

3、Looper創建後調用loop方法會一直循環,爲了防止ANR採用了Linux的epoll監聽文件描述符的寫入事件來實現loop的阻塞和喚醒,實現無線循環

4、最終Looper會調用msg.target.dispatchMessage(msg)來最終回調Handler處理事件

5、Message獲取時採用了回收複用的機制,建議使用obtain獲取Message

6、Looper的prepare方法會創建MessageQueue

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章