C++ young 程序庫——y_optm_string.hpp 和 y_string.hpp

文件位置:young/string/y_optm_string.hpp

/*
/*
The young Library
Copyright (c) 2005 by 楊桓

Permission to use, copy, modify, distribute and sell this software for any
purpose is hereby granted without fee, provided that the above copyright
notice appear in all copies and that both that copyright notice and this
permission notice appear in supporting documentation.
The author make no representations about the suitability of this software
for any purpose. It is provided "as is" without express or implied warranty.
*/

//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
#ifndef __MACRO_CPLUSPLUS_YOUNG_LIBRARY_OPTIMIZATION_STRING_HEADER_FILE__
#define __MACRO_CPLUSPLUS_YOUNG_LIBRARY_OPTIMIZATION_STRING_HEADER_FILE__
//-----------------------------------------------------------------------------
#include "../y_allocator.hpp"
#include "../y_iterator.hpp"
#include "../y_char_traits.hpp"
#include "../y_exception.hpp"
#include "../algorithm/y_algorithm_base.hpp"
//-----------------------------------------------------------------------------
__MACRO_CPLUSPLUS_YOUNG_LIBRARY_BEGIN_NAMESPACE__
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------

template< typename CharT, typename Traits = char_traits<CharT>,
          typename Allocator = allocator<CharT> >
class optm_string
{
public:
    typedef  optm_string<CharT, Traits, Allocator>  self;

    typedef  CharT      char_type;
    typedef  Traits     traits_type;
    typedef  Allocator  allocator_type;

    typedef  char_type                         value_type;
    typedef  value_type&                       reference;
    typedef  const value_type&                 const_reference;
    typedef  value_type*                       pointer;
    typedef  const value_type*                 const_pointer;
    typedef  def_size_t                        size_type;
    typedef  def_ptrdiff_t                     difference_type;

    typedef  value_type*                       iterator;
    typedef  const value_type*                 const_iterator;
    typedef  Reverse_Iterator<iterator>        reverse_iterator;
    typedef  Reverse_Iterator<const_iterator>  const_reverse_iterator;

    static const size_type npos = size_t_max;
    static const size_type unshareable = size_t_max;

protected:
    struct ref_str
    {
        size_type       ref;
        char_type*      data;
        size_type       capa, len;
        allocator_type  alloc;

        size_type max_size() const
        {  return (npos - 1) / sizeof(char_type);  }

        explicit ref_str( size_type n ):ref(1)
        {  alloc_data( n );  }

        ref_str( const ref_str& rhs ):ref(1)
        {
            alloc_data( rhs.len );
            data_copy( 0, rhs.data, rhs.len );
        }

        ~ref_str()
        {
            if( data )
                alloc.deallocate( data, ++capa );
        }

        void data_copy( size_type pos, const char_type* str, size_type count )
        {
            if( count > 0 )
                traits_type::copy( data + pos, str, count );
        }

        void data_move( size_type pos, const char_type* str, size_type count )
        {
            if( count > 0 )
                traits_type::move( data + pos, str, count );
        }

        void data_set( size_type pos, const char_type c, size_type count )
        {
            if( count > 0 )
                traits_type::assign( data + pos, count, c );
        }

    private:
        ref_str& operator=(const self&);

        void alloc_data( size_type n );
        size_type string_bytes( size_type n );

    } *m_pstr;  //end struct


public:
    optm_string() : m_pstr( new ref_str(0) )  {}

    explicit optm_string( size_type str_size ) : m_pstr( new ref_str(str_size) )  {}

    optm_string( int str_size, char_type c ) : m_pstr( new ref_str(str_size) )
        {  assign( static_cast<size_type>(str_size), c );  }
    optm_string( long str_size, char_type c ) : m_pstr( new ref_str(str_size) )
        {  assign( static_cast<size_type>(str_size), c );  }
    optm_string( size_type str_size, char_type c ) : m_pstr( new ref_str(str_size) )
        {  assign( str_size, c );  }

    optm_string( const char_type* str )
    {
        size_type str_size = traits_type::length( str );
        m_pstr = new ref_str( str_size );
        assign( str, str_size );
    }

    optm_string( const char_type* str, size_type str_size )
    : m_pstr( new ref_str(str_size) )
    {
        assign( str, str_size );
    }

    optm_string( const self& rhs, size_type pos = 0, size_type count = npos );

    template< typename InputIterator >
    optm_string( InputIterator first, InputIterator last )
    : m_pstr( new ref_str(0) )
    {
        assign( first, last );
    }

    ~optm_string()  {  release();  }

    const char_type* data() const  {  return m_pstr->data;  }

    self& operator=( const self& rhs );
    self& operator=( char_type c )           {  return assign( 1, c );  }
    self& operator=( const char_type* str )  {  return assign( str );  }

    self& operator+=( const self& rhs )       {  return append( rhs );  }
    self& operator+=( char_type c )           {  return append( 1, c );  }
    self& operator+=( const char_type* str )  {  return append( str );  }

    void push_back( const char_type& c )  {  append( 1, c );  }
    void pop_back()                       {  erase( m_pstr->len - 1, 1 );  }

    size_type size() const      {  return m_pstr->len;  }
    size_type length() const    {  return m_pstr->len;  }
    size_type space() const     {  return ( m_pstr->capa - m_pstr->len );  }
    size_type capacity() const  {  return m_pstr->capa;  }
    size_type max_size() const  {  return m_pstr->max_size();  }
    bool empty() const          {  return size() == 0;  }

    iterator begin()              {  return m_pstr->data;  }
    iterator end()                {  return ( m_pstr->data + m_pstr->len );  }
    const_iterator begin() const  {  return m_pstr->data;  }
    const_iterator end() const    {  return ( m_pstr->data + m_pstr->len );  }

    reverse_iterator rbegin()              {  return end();  }
    reverse_iterator rend()                {  return begin();  }
    const_reverse_iterator rbegin() const  {  return end();  }
    const_reverse_iterator rend() const    {  return begin();  }

    self substr( size_type pos = 0, size_type count = npos ) const
    {
        return self( *this, pos, count );
    }

    const char_type* c_str() const
    {
        if( size() > 0 )
            traits_type::assign( m_pstr->data[m_pstr->len], traits_type::eos() );
        return data();
    }

    char_type& operator[]( size_type index )
    {
        copy( false );
        return *( begin() + index );
    }
    const char_type& operator[]( size_type index ) const
    {
        return data()[index];
    }

    char_type& at( size_type index )
    {
        if( index >= size() )
            throw_out_of_range( "optm_string::at()" );
        copy( false );
        return *( begin() + index );
    }
    const char_type& at( size_type index ) const
    {
        if( index >= size() )
            throw_out_of_range( "optm_string::at()" );
        return data()[index];
    }

    void clear()
    {
        release();
        m_pstr = NULL_POINTER;
    }

    void reserve( size_type new_size )
    {
        if( capacity() < new_size )
        {
            self temp( new_size );
            temp.insert( 0, m_pstr->data, size() );
            swap( temp );
        }
    }

    void resize( size_type new_size )
        {  resize( new_size, traits_type::eos() );  }
    void resize( size_type new_size, char_type c );

    void swap( self& rhs )
    {
        if( m_pstr != rhs.m_pstr )
            data_swap( m_pstr, rhs.m_pstr );
    }

    size_type copy( char_type* str, size_type count = npos,
                    size_type pos = 0 ) const
    {
        if( pos > m_pstr->len )
            throw_out_of_range( "optm_string::copy()" );

        if( count > m_pstr->len - pos )
            count = m_pstr->len - pos;
        traits_type::copy( str, data() + pos, count );
        return count;
    }


    //replace:1
    self& replace( size_type pos, size_type before_count,
                   const self& str, size_type str_pos,
                   size_type after_count );
    //replace:2
    self& replace( size_type pos, size_type before_count,
                   const char_type* str, size_type after_count );
    //replace:3
    self& replace( size_type pos, size_type before_count,
                   size_type after_count, char_type c );
    //replace:4
    template< typename InputIterator >
    self& replace( iterator first_pos, iterator last_pos,
                   InputIterator first, InputIterator last );
    //replace:5
    self& replace( size_type pos, size_type count, const char_type* str )
        {  return replace( pos, count, str, traits_type::length(str) );  }
    //replace:6
    self& replace( size_type pos, size_type count, char_type c )
        {  return replace( pos, count, 1, c );  }
    //replace:7
    self& replace( iterator first, iterator last, const self& str )
        {  return replace( size_type(first - begin()),
                           size_type(last - first), str, 0, npos );  }
    //replace:8
    self& replace( iterator first, iterator last,
                   const char_type* str, size_type count )
        {  return replace( size_type(first - begin()),
                           size_type(last - first), str, count );  }
    //replace:9
    self& replace( iterator first, iterator last, const char_type* str )
        {  return replace( size_type(first - begin()), size_type(last - first),
                           str, traits_type::length(str) );  }
    //replace:10
    self& replace( iterator first, iterator last,
                   size_type count, char_type c )
        {  return replace( size_type(first - begin()),
                           size_type(last - first), count, c );  }


    self& assign( const self& str, size_type pos = 0, size_type count = npos )
        {  return replace( 0, npos, str, pos, count );  }
    self& assign( const char_type* str, size_type count )
        {  return replace( 0, npos, str, count );  }
    self& assign( const char_type* str )
        {  return assign( str, traits_type::length(str) );  }
    self& assign( size_type count, char_type c )
        {  return replace( 0, npos, count, c );  }
    template< typename InputIterator >
    self& assign( InputIterator first, InputIterator last )
        {  return replace( begin(), end(), first, last );  }


    self& append( const self& str, size_type pos = 0, size_type count = npos )
        {  return replace( size(), 0, str, pos, count );  }
    self& append( const char_type* str, size_type count )
        {  return replace( size(), 0, str, count );  }
    self& append( const char_type* str )
        {  return append( str, traits_type::length(str) );  }
    self& append( size_type count, char_type c )
        {  return replace( size(), 0, count, c );  }
    template< typename InputIterator >
    self& append( InputIterator first, InputIterator last )
        {  return replace( end(), end(), first, last );  }


    self& insert( size_type pos, const self& str,
                  size_type str_pos = 0, size_type count = npos )
        {  return replace( pos, 0, str, str_pos, count );  }
    self& insert( size_type pos, const char_type* str, size_type count )
        {  return replace( pos, 0, str, count );  }
    self& insert( size_type pos, const char_type* str )
        {  return insert( pos, str, traits_type::length(str) );  }
    self& insert( size_type pos, size_type count, char_type c )
        {  return replace( pos, 0, count, c );  }
    iterator insert( iterator pos, char_type c )
    {
        size_type position = pos - begin();
        insert( position, 1, c );
        return begin() + position;
    }
    void insert( iterator pos, size_type count, char_type c )
    {
        size_type position = pos - begin();
        insert( position, count, c );
    }
    template< typename InputIterator >
    void insert( iterator pos, InputIterator first, InputIterator last )
        {  replace( pos, pos, first, last );  }


    iterator erase( iterator pos )
    {
        size_type n = pos - begin();
        replace( pos, pos + 1, (size_type)0, char_type() );
        return begin() + n;
    }
    iterator erase( iterator first, iterator last )
    {
        size_type pos = first - begin();
        size_type n = last - first;
        replace( pos, n, (size_type)0, char_type() );
        return begin() + pos;
    }
    self& erase( size_type pos = 0, size_type count = npos )
    {
        return replace( pos, count, (size_type)0, char_type() );
    }


    // (1) < 0 :this < str;  (2) = 0 : this = str;  (3) > 0 : this > str
    int compare( const self& str ) const;
    int compare( const char_type* str ) const;
    int compare( size_type pos, size_type count, const self& str,
                 size_type str_pos, size_type str_count = npos ) const;
    int compare( size_type pos, size_type count, const char_type* str,
                 size_type str_count = npos ) const;


    size_type find( const char_type* str, size_type pos, size_type count ) const;
    size_type find( char_type c, size_type pos = 0 ) const
        {  return find_char( data(), c, pos, size() );  }
    size_type find( const char_type* str, size_type pos = 0 ) const
        {  return find( str, pos, traits_type::length(str) );  }
    size_type find( const self& str, size_type pos = 0 ) const
        {  return find( str.data(), pos, str.size() );  }


    size_type rfind( const char_type* str, size_type pos, size_type count ) const;
    size_type rfind( char_type c, size_type pos = npos ) const;
    size_type rfind( const char_type* str, size_type pos = npos ) const
        {  return rfind( str, pos, traits_type::length(str) );  }
    size_type rfind( const self& str, size_type pos = npos) const
        {  return rfind( str.data(), pos, str.size() );  }


    size_type find_first_of( const char_type* str,
                             size_type pos, size_type count ) const;
    size_type find_first_of( const self& str, size_type pos = 0 ) const
        {  return find_first_of( str.data(), pos, str.size() );  }
    size_type find_first_of( const char_type* str, size_type pos = 0 ) const
        {  return find_first_of( str, pos, traits_type::length(str) );  }
    size_type find_first_of( char_type c, size_type pos = 0 ) const
        {  return find(c, pos);  }


    size_type find_last_of( const char_type* str,
                            size_type pos, size_type count ) const;
    size_type find_last_of( const self& str, size_type pos = npos ) const
        {  return find_last_of( str.data(), pos, str.size() );  }
    size_type find_last_of( const char_type* str, size_type pos = npos ) const
        {  return find_last_of( str, pos, traits_type::length(str) );  }
    size_type find_last_of( char_type c, size_type pos = npos ) const
        {  return rfind(c, pos);  }


    size_type find_first_not_of( const char_type* str,
                                 size_type pos, size_type count ) const;
    size_type find_first_not_of( char_type c, size_type pos = 0 ) const;
    size_type find_first_not_of( const char_type* str, size_type pos = 0 ) const
        {  return find_first_not_of( str, pos, traits_type::length(str) );  }
    size_type find_first_not_of( const self& str, size_type pos = 0 ) const
        {  return find_first_not_of( str.data(), pos, str.size() );  }


    size_type find_last_not_of( const char_type* str,
                                size_type pos, size_type count ) const;
    size_type find_last_not_of( char_type c, size_type pos = npos ) const;
    size_type find_last_not_of( const char_type* str, size_type pos = npos ) const
        {  return find_last_not_of( str, pos, traits_type::length(str) );  }
    size_type find_last_not_of( const self& str, size_type pos = npos ) const
        {  return find_last_not_of( str.data(), pos, str.size() );  }

protected:
    void release()
    {
        if( --(m_pstr->ref) == 0 )
            delete m_pstr;
    }

    void copy( bool share = true )
    {
        if( m_pstr->ref > 1 && m_pstr->ref != unshareable )
        {
            self temp( data(), size() );
            swap( temp );
        }
        m_pstr->ref = share ? 1 : unshareable;
    }

    bool check_realloc( size_type new_len )
    {
        if( (m_pstr->ref > 1 && m_pstr->ref != unshareable)
            || capacity() < new_len )
            return true;
        else
            return false;
    }

    size_type find_char( const char_type* str, const char_type& c,
                         size_type pos, size_type end ) const
    {
        if( pos < end )
        {
            const char_type* p = traits_type::find( str + pos, end - pos, c );
            if( p )
                return ( p - str );
        }
        return npos;
    }

}; //end class

//-----------------------------------------------------------------------------

template< typename CharT, typename Traits, typename Allocator >
inline typename optm_string<CharT, Traits, Allocator>::size_type
optm_string<CharT, Traits, Allocator>::ref_str::string_bytes( size_type n )
{
    size_type n_bytes = n * sizeof( char_type );
    size_type i_bytes = string_alignment_bytes;

    while( i_bytes < n_bytes )
        i_bytes *= 2;

    return i_bytes;
}
//-----------------------------------------------------------------------------

template< typename CharT, typename Traits, typename Allocator >
void optm_string<CharT, Traits, Allocator>::ref_str::alloc_data( size_type n )
{
    if( n < 1 )
    {
        data = NULL_POINTER;
        capa = 0;
        len = 0;
    }
    else
    {
        if( n > max_size() )
            throw_length_error( "optm_string::alloc_data()" );
        size_type bytes = string_bytes( n + 1 );
        len = 0;
        capa = bytes / sizeof( char_type );
        data = alloc.allocate( capa );
        --capa;
    }
}
//-----------------------------------------------------------------------------

template< typename CharT, typename Traits, typename Allocator >
optm_string<CharT, Traits, Allocator>::optm_string( const self& rhs,
                                                    size_type pos,
                                                    size_type count )
{
    if( rhs.m_pstr->ref != unshareable )
    {
        m_pstr = rhs.m_pstr;
        ++( m_pstr->ref );
    }
    else
    {
        if( pos > rhs.size() )
            throw_length_error( "optm_string::optm_string" );
        count = min( rhs.size() - pos, count );
        m_pstr = new ref_str( count );
        m_pstr->data_copy( 0, rhs.data() + pos, count );
        m_pstr->len = count;
    }
}
//-----------------------------------------------------------------------------

template< typename CharT, typename Traits, typename Allocator >
optm_string<CharT, Traits, Allocator>&
optm_string<CharT, Traits, Allocator>::operator=( const self& rhs )
{
    if( m_pstr != rhs.m_pstr )
    {
        if( m_pstr->ref == unshareable || rhs.m_pstr->ref == unshareable )
        {
            if( capacity() < rhs.size() )
            {
                self temp( rhs );
                swap( temp );
            }
            else
                m_pstr->data_copy( 0, rhs.data(), rhs.size() );
        }
        else  //均爲可共享狀態
        {
            if( m_pstr->ref > 1 || capacity() < rhs.size() )
            {
                release();
             m_pstr = rhs.m_pstr;
                ++( m_pstr->ref );
            }
            else
                m_pstr->data_copy( 0, rhs.data(), rhs.size() );
        }
    }

    return *this;
}
//-----------------------------------------------------------------------------

template< typename CharT, typename Traits, typename Allocator >
void optm_string<CharT, Traits, Allocator>::resize( size_type new_size,
                                                    char_type c )
{
    if( new_size > max_size() )
        throw_length_error( "optm_string::resize()" );

    if( m_pstr->ref > 1 || capacity() < new_size )
    {
        self temp( new_size, c );
        swap( temp );
    }
    else if( new_size > m_pstr->len )
        append( new_size - m_pstr->len, c );
    else if( new_size < m_pstr->len )
        erase( new_size, m_pstr->len - new_size );
}
//-----------------------------------------------------------------------------

template< typename CharT, typename Traits, typename Allocator >
inline optm_string<CharT, Traits, Allocator>&
optm_string<CharT, Traits, Allocator>::replace( size_type pos,
                                                size_type before_count,
                                                const self& str,
                                                size_type str_pos,
                                                size_type after_count )
{
    const size_type str_len = str.size();

    if( pos == 0 && before_count >= size()
        && str_pos == 0 && after_count >= str_len )
        return operator=( str );

    if( str_pos > str_len )
        throw_out_of_range( "optm_string::replace()" );

    if( after_count > str_len - str_pos )
        after_count = str_len - str_pos;

    return replace( pos, before_count, str.data() + str_pos, after_count );
}
//-----------------------------------------------------------------------------

template< typename CharT, typename Traits, typename Allocator >
optm_string<CharT, Traits, Allocator>&
optm_string<CharT, Traits, Allocator>::replace( size_type pos,
                                                size_type before_count,
                                                const char_type* str,
                                                size_type after_count )
{
    const size_type old_len = size();
    if( pos > old_len )
        throw_out_of_range( "optm_string::replace()" );

    if( before_count > old_len - pos )
        before_count = old_len - pos;

    if( old_len - before_count > max_size() - after_count )
        throw_length_error( "optm_string::replace()" );
    size_type new_len = old_len - before_count + after_count;

    if( check_realloc(new_len) )
    {
        self temp( new_len );
        temp.m_pstr->data_copy( 0, data(), pos );
        temp.m_pstr->data_copy( pos + after_count, data() + pos + before_count,
                                old_len - (pos + before_count) );
        temp.m_pstr->data_copy( pos, str, after_count );
        swap( temp );
    }
    else
    {
        m_pstr->data_move( pos + after_count, data() + pos + before_count,
                           old_len - (pos + before_count) );
        m_pstr->data_copy( pos, str, after_count );
    }

    m_pstr->len = new_len;
    return *this;
}
//-----------------------------------------------------------------------------

template< typename CharT, typename Traits, typename Allocator >
optm_string<CharT, Traits, Allocator>&
optm_string<CharT, Traits, Allocator>::replace( size_type pos,
                                                size_type before_count,
                                                size_type after_count,
                                                char_type c )
{
    const size_type old_len = size();
    if( pos > old_len )
        throw_out_of_range( "optm_string::replace()" );

    if( before_count > old_len - pos )
        before_count = old_len - pos;

    if( old_len - before_count > max_size() - after_count )
        throw_length_error( "optm_string::replace()" );
    size_type new_len = old_len - before_count + after_count;

    if( check_realloc(new_len) )
    {
        self temp( new_len );
        temp.m_pstr->data_copy( 0, data(), pos );
        temp.m_pstr->data_copy( pos + after_count, data() + pos + before_count,
                                old_len - (pos + before_count) );
        temp.m_pstr->data_set( pos, c, after_count );
        swap( temp );
    }
    else
    {
        m_pstr->data_move( pos + after_count, data() + pos + before_count,
                           old_len - (pos + before_count) );
        m_pstr->data_set( pos, c, after_count );
    }

    m_pstr->len = new_len;
    return *this;
}
//-----------------------------------------------------------------------------

template< typename CharT, typename Traits, typename Allocator >
template< typename InputIterator >
optm_string<CharT, Traits, Allocator>&
optm_string<CharT, Traits, Allocator>::replace( iterator first_pos,
                                                iterator last_pos,
                                                InputIterator first,
                                                InputIterator last )
{
    if( first == last )
        return *this;

    const size_type old_len = size();
    size_type pos = first_pos - begin();
    if( pos > old_len )
        throw_out_of_range( "optm_string::replace()" );

    size_type before_count = last_pos - first_pos;
    size_type after_count = distance( first, last );

    if( before_count > old_len - pos )
        before_count = old_len - pos;

    if( old_len - before_count > max_size() - after_count )
        throw_length_error( "optm_string::replace()" );
    size_type new_len = old_len - before_count + after_count;

    if( check_realloc(new_len) )
    {
        self temp( new_len );
        temp.m_pstr->data_copy( 0, data(), pos );
        temp.m_pstr->data_copy( pos + after_count, data() + pos + before_count,
                                old_len - (pos + before_count) );
        for( ; after_count > 0; ++first,++pos,--after_count )
            traits_type::assign( *(m_pstr->data + pos), *first );
        swap( temp );
    }
    else
    {
        m_pstr->data_move( pos + after_count, data() + pos + before_count,
                           old_len - (pos + before_count) );
        for( ; after_count > 0; ++first,++pos,--after_count )
            traits_type::assign( *(m_pstr->data + pos), *first );
    }

    m_pstr->len = new_len;
    return *this;
}
//-----------------------------------------------------------------------------

template< typename CharT, typename Traits, typename Allocator >
inline
int optm_string<CharT, Traits, Allocator>::compare( const self& str ) const
{
    int result = traits_type::compare( data(), str.data(),
                                       min( size(), str.size() ) );

    if( result == 0 )
        result = size() - str.size();

    return result;
}
//-----------------------------------------------------------------------------

template< typename CharT, typename Traits, typename Allocator >
inline
int optm_string<CharT, Traits, Allocator>::compare( const char_type* str ) const
{
    size_type str_len = traits_type::length( str );

    int result = traits_type::compare( data(), str, min(size(), str_len) );

    if( result == 0 )
        result = size() - str_len;

    return result;
}
//-----------------------------------------------------------------------------

template< typename CharT, typename Traits, typename Allocator >
int optm_string<CharT, Traits, Allocator>::compare( size_type pos,
                                                    size_type count,
                                                    const self& str,
                                                    size_type str_pos,
                                                    size_type str_count ) const
{
    if( pos > size() || str_pos > str.size() )
        throw_out_of_range( "optm_string::compare()" );

    size_type str_len = min( str.size() - str_pos, str_count );
    size_type this_len = min( size() - pos, count );

    int result = traits_type::compare( data() + pos, str.data() + str_pos,
                                       min(str_len, this_len) );

    if( result == 0 )
        result = this_len - str_len;

    return result;
}
//-----------------------------------------------------------------------------

template< typename CharT, typename Traits, typename Allocator >
int optm_string<CharT, Traits, Allocator>::compare( size_type pos,
                                                    size_type count,
                                                    const char_type* str,
                                                    size_type str_count ) const
{
    if( pos > size() )
        throw_out_of_range( "optm_string::compare()" );

    size_type str_len = min( traits_type::length(str), str_count );
    size_type this_len = min( size() - pos, count );

    int result = traits_type::compare( data() + pos, str,
                                       min(str_len, this_len) );

    if( result == 0 )
        result = this_len - str_len;

    return result;
}
//-----------------------------------------------------------------------------

template< typename CharT, typename Traits, typename Allocator >
typename optm_string<CharT, Traits, Allocator>::size_type
optm_string<CharT, Traits, Allocator>::find( const char_type* str,
                                             size_type pos,
                                             size_type count ) const
{
    for( ; pos + count <= size(); ++pos )
    {
        if( traits_type::eq( data()[pos], *str )
            && traits_type::compare( data() + pos, str, count ) == 0 )
            return pos;
    }
    return npos;
}
//-----------------------------------------------------------------------------

template< typename CharT, typename Traits, typename Allocator >
typename optm_string<CharT, Traits, Allocator>::size_type
optm_string<CharT, Traits, Allocator>::rfind( const char_type* str,
                                              size_type pos,
                                              size_type count ) const
{
    if( count > size() )
        return npos;

    size_type end_pos = size() - 1;
    if( end_pos > pos )
        end_pos = pos;

    for( ++end_pos; end_pos-- > 0; )
    {
        if( traits_type::eq( data()[end_pos], *str )
            && traits_type::compare( data() + end_pos, str, count ) == 0 )
            return end_pos;
    }
    return npos;
}
//-----------------------------------------------------------------------------

template< typename CharT, typename Traits, typename Allocator >
typename optm_string<CharT, Traits, Allocator>::size_type
optm_string<CharT, Traits, Allocator>::rfind( char_type c,
                                              size_type pos ) const
{
    if( size() < 1 )
        return npos;

    size_type end_pos = size() - 1;
    if( end_pos > pos )
        end_pos = pos;

    for( ++end_pos; end_pos-- > 0; )
    {
        if( traits_type::eq( data()[end_pos], c ) )
            return end_pos;
    }
    return npos;
}
//-----------------------------------------------------------------------------

template< typename CharT, typename Traits, typename Allocator >
typename optm_string<CharT, Traits, Allocator>::size_type
optm_string<CharT, Traits, Allocator>::find_first_of( const char_type* str,
                                                      size_type pos,
                                                      size_type count ) const
{
    for( ; pos < size(); ++pos )
    {
        if( find_char( str, data()[pos], 0, count ) != npos )
            return pos;
    }
    return npos;
}
//-----------------------------------------------------------------------------

template< typename CharT, typename Traits, typename Allocator >
typename optm_string<CharT, Traits, Allocator>::size_type
optm_string<CharT, Traits, Allocator>::find_last_of( const char_type* str,
                                                     size_type pos,
                                                     size_type count ) const
{
    if( size() == 0 )
        return npos;

    size_type end_pos = size() - 1;
    if( end_pos > pos )
        end_pos = pos;

    for( ++end_pos; end_pos-- > 0; )
    {
        if( find_char( str, data()[end_pos], 0, count ) != npos )
            return end_pos;
    }
    return npos;
}
//-----------------------------------------------------------------------------

template< typename CharT, typename Traits, typename Allocator >
typename optm_string<CharT, Traits, Allocator>::size_type
optm_string<CharT, Traits, Allocator>::find_first_not_of( const char_type* str,
                                                          size_type pos,
                                                          size_type count ) const
{
    for( ; pos < size(); ++pos )
    {
        if( find_char( str, data()[pos], 0, count ) == npos )
            return pos;
    }
    return npos;
}
//-----------------------------------------------------------------------------

template< typename CharT, typename Traits, typename Allocator >
typename optm_string<CharT, Traits, Allocator>::size_type
optm_string<CharT, Traits, Allocator>::find_first_not_of( char_type c,
                                                          size_type pos ) const
{
    for( ; pos < size(); ++pos )
    {
        if( !traits_type::eq( data()[pos], c ) )
            return pos;
    }
    return npos;
}
//-----------------------------------------------------------------------------

template< typename CharT, typename Traits, typename Allocator >
typename optm_string<CharT, Traits, Allocator>::size_type
optm_string<CharT, Traits, Allocator>::find_last_not_of( const char_type* str,
                                                         size_type pos,
                                                         size_type count ) const
{
    if( size() == 0 )
        return npos;

    size_type end_pos = size() - 1;
    if( end_pos > pos )
        end_pos = pos;

    for( ++end_pos; end_pos-- > 0; )
    {
        if( find_char( str, data()[end_pos], 0, count ) == npos )
            return end_pos;
    }
    return npos;
}
//-----------------------------------------------------------------------------

template< typename CharT, typename Traits, typename Allocator >
typename optm_string<CharT, Traits, Allocator>::size_type
optm_string<CharT, Traits, Allocator>::find_last_not_of( char_type c,
                                                         size_type pos ) const
{
    if( size() < 1 )
        return npos;

    size_type end_pos = size() - 1;
    if( end_pos > pos )
        end_pos = pos;

    for( ++end_pos; end_pos-- > 0; )
    {
        if( !traits_type::eq( data()[end_pos], c ) )
            return end_pos;
    }
    return npos;
}

//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------

template< typename CharT, typename Traits, typename Allocator >
inline void swap( optm_string<CharT, Traits, Allocator>& lhs,
                  optm_string<CharT, Traits, Allocator>& rhs )
{
    lhs.swap( rhs );
}

//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------

//以下爲重載的運算符

//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------

template< typename CharT, typename Traits, typename Allocator >
inline optm_string<CharT, Traits, Allocator>
operator+( const optm_string<CharT, Traits, Allocator>& lhs,
           const optm_string<CharT, Traits, Allocator>& rhs )
{
    optm_string<CharT, Traits, Allocator> str( lhs );
    str.append( rhs );
    return str;
}

template< typename CharT, typename Traits, typename Allocator >
inline optm_string<CharT, Traits, Allocator>
operator+( const char* lhs, const optm_string<CharT, Traits, Allocator>& rhs )
{
    optm_string<CharT, Traits, Allocator> str( lhs );
    str.append( rhs );
    return str;
}

template< typename CharT, typename Traits, typename Allocator >
inline optm_string<CharT, Traits, Allocator>
operator+( const optm_string<CharT, Traits, Allocator>& lhs, const char* rhs )
{
    optm_string<CharT, Traits, Allocator> str( lhs );
    str.append( rhs );
    return str;
}

template< typename CharT, typename Traits, typename Allocator >
inline optm_string<CharT, Traits, Allocator>
operator+( const optm_string<CharT, Traits, Allocator>& lhs, CharT c )
{
    optm_string<CharT, Traits, Allocator> str( lhs );
    str.append( 1, c );
    return str;
}

template< typename CharT, typename Traits, typename Allocator >
inline optm_string<CharT, Traits, Allocator>
operator+(  CharT c, const optm_string<CharT, Traits, Allocator>& rhs )
{
    optm_string<CharT, Traits, Allocator> str( rhs );
    str.append( 1, c );
    return str;
}

//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------

template< typename CharT, typename Traits, typename Allocator >
inline bool operator==( const optm_string<CharT, Traits, Allocator>& lhs,
                        const optm_string<CharT, Traits, Allocator>& rhs )
{
    return ( lhs.compare(rhs) == 0 );
}

template< typename CharT, typename Traits, typename Allocator >
inline bool operator==( const optm_string<CharT, Traits, Allocator>& lhs,
                        const CharT* rhs )
{
    return ( lhs.compare(rhs) == 0 );
}

template< typename CharT, typename Traits, typename Allocator >
inline bool operator==( const CharT* lhs,
                        const optm_string<CharT, Traits, Allocator>& rhs )
{
    return ( rhs.compare(lhs) == 0 );
}

//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------

template< typename CharT, typename Traits, typename Allocator >
inline bool operator!=( const optm_string<CharT, Traits, Allocator>& lhs,
                        const optm_string<CharT, Traits, Allocator>& rhs )
{
    return ( lhs.compare(rhs) != 0 );
}

template< typename CharT, typename Traits, typename Allocator >
inline bool operator!=( const optm_string<CharT, Traits, Allocator>& lhs,
                        const CharT* rhs )
{
    return ( lhs.compare(rhs) != 0 );
}

template< typename CharT, typename Traits, typename Allocator >
inline bool operator!=( const CharT* lhs,
                        const optm_string<CharT, Traits, Allocator>& rhs )
{
    return ( rhs.compare(lhs) != 0 );
}

//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------

template< typename CharT, typename Traits, typename Allocator >
inline bool operator<( const optm_string<CharT, Traits, Allocator>& lhs,
                       const optm_string<CharT, Traits, Allocator>& rhs )
{
    return ( lhs.compare(rhs) < 0 );
}

template< typename CharT, typename Traits, typename Allocator >
inline bool operator<( const optm_string<CharT, Traits, Allocator>& lhs,
                       const CharT* rhs )
{
    return ( lhs.compare(rhs) < 0 );
}

template< typename CharT, typename Traits, typename Allocator >
inline bool operator<( const CharT* lhs,
                       const optm_string<CharT, Traits, Allocator>& rhs )
{
    return ( rhs.compare(lhs) > 0 );
}

//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------

template< typename CharT, typename Traits, typename Allocator >
inline bool operator<=( const optm_string<CharT, Traits, Allocator>& lhs,
                        const optm_string<CharT, Traits, Allocator>& rhs )
{
    return ( lhs.compare(rhs) <= 0 );
}

template< typename CharT, typename Traits, typename Allocator >
inline bool operator<=( const optm_string<CharT, Traits, Allocator>& lhs,
                        const CharT* rhs )
{
    return ( lhs.compare(rhs) <= 0 );
}

template< typename CharT, typename Traits, typename Allocator >
inline bool operator<=( const CharT* lhs,
                        const optm_string<CharT, Traits, Allocator>& rhs )
{
    return ( rhs.compare(lhs) >= 0 );
}

//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------

template< typename CharT, typename Traits, typename Allocator >
inline bool operator>( const optm_string<CharT, Traits, Allocator>& lhs,
                       const optm_string<CharT, Traits, Allocator>& rhs )
{
    return ( lhs.compare(rhs) > 0 );
}

template< typename CharT, typename Traits, typename Allocator >
inline bool operator>( const optm_string<CharT, Traits, Allocator>& lhs,
                       const CharT* rhs )
{
    return ( lhs.compare(rhs) > 0 );
}

template< typename CharT, typename Traits, typename Allocator >
inline bool operator>( const CharT* lhs,
                       const optm_string<CharT, Traits, Allocator>& rhs )
{
    return ( rhs.compare(lhs) < 0 );
}

//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------

template< typename CharT, typename Traits, typename Allocator >
inline bool operator>=( const optm_string<CharT, Traits, Allocator>& lhs,
                        const optm_string<CharT, Traits, Allocator>& rhs )
{
    return ( lhs.compare(rhs) >= 0 );
}

template< typename CharT, typename Traits, typename Allocator >
inline bool operator>=( const optm_string<CharT, Traits, Allocator>& lhs,
                        const CharT* rhs )
{
    return ( lhs.compare(rhs) >= 0 );
}

template< typename CharT, typename Traits, typename Allocator >
inline bool operator>=( const CharT* lhs,
                        const optm_string<CharT, Traits, Allocator>& rhs )
{
    return ( rhs.compare(lhs) <= 0 );
}

//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
__MACRO_CPLUSPLUS_YOUNG_LIBRARY_END_NAMESPACE__
#endif
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------


文件位置:young/y_string.hpp

/*
The young Library
Copyright (c) 2005 by 楊桓

Permission to use, copy, modify, distribute and sell this software for any
purpose is hereby granted without fee, provided that the above copyright
notice appear in all copies and that both that copyright notice and this
permission notice appear in supporting documentation.
The author make no representations about the suitability of this software
for any purpose. It is provided "as is" without express or implied warranty.
*/

//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
#ifndef __MACRO_CPLUSPLUS_YOUNG_LIBRARY_STRING_HEADER_FILE__
#define __MACRO_CPLUSPLUS_YOUNG_LIBRARY_STRING_HEADER_FILE__
//-----------------------------------------------------------------------------
#include <iostream>
#include "string/y_basic_string.hpp"
#include "string/y_optm_string.hpp"
//-----------------------------------------------------------------------------
__MACRO_CPLUSPLUS_YOUNG_LIBRARY_BEGIN_NAMESPACE__
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------

typedef  basic_string<char>     string;
typedef  basic_string<wchar_t>  wstring;

typedef  basic_string<char, lower_char_traits>              lstring;
typedef  basic_string<char, upper_char_traits>              ustring;
typedef  basic_string<char, cmp_no_case_char_traits>        ncstring;
typedef  basic_string<char, cmp_no_case_lower_char_traits>  nclstring;
typedef  basic_string<char, cmp_no_case_upper_char_traits>  ncustring;

typedef  basic_string<wchar_t, lower_wchar_traits>              lwstring;
typedef  basic_string<wchar_t, upper_wchar_traits>              uwstring;
typedef  basic_string<wchar_t, cmp_no_case_wchar_traits>        ncwstring;
typedef  basic_string<wchar_t, cmp_no_case_lower_wchar_traits>  nclwstring;
typedef  basic_string<wchar_t, cmp_no_case_upper_wchar_traits>  ncuwstring;

//-----------------------------------------------------------------------------

typedef  optm_string<char>     o_string;
typedef  optm_string<wchar_t>  o_wstring;

typedef  optm_string<char, lower_char_traits>              o_lstring;
typedef  optm_string<char, upper_char_traits>              o_ustring;
typedef  optm_string<char, cmp_no_case_char_traits>        o_ncstring;
typedef  optm_string<char, cmp_no_case_lower_char_traits>  o_nclstring;
typedef  optm_string<char, cmp_no_case_upper_char_traits>  o_ncustring;

typedef  optm_string<wchar_t, lower_wchar_traits>              o_lwstring;
typedef  optm_string<wchar_t, upper_wchar_traits>              o_uwstring;
typedef  optm_string<wchar_t, cmp_no_case_wchar_traits>        o_ncwstring;
typedef  optm_string<wchar_t, cmp_no_case_lower_wchar_traits>  o_nclwstring;
typedef  optm_string<wchar_t, cmp_no_case_upper_wchar_traits>  o_ncuwstring;

//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------

template< typename CharT, typename Traits, typename Allocator >
inline std::basic_ostream<CharT>&
operator<<( std::basic_ostream<CharT>& os,
            const basic_string<CharT, Traits, Allocator>& str )
{
    return os.write( str.data(), str.size() );
}


template< typename CharT, typename Traits, typename Allocator >
std::basic_istream<CharT>&
operator>>( std::basic_istream<CharT>& is,
            basic_string<CharT, Traits, Allocator>& str )
{
    typedef  std::ctype<CharT>            ctype_t;
    typedef  std::basic_istream<CharT>    istream_type;
    typedef  std::basic_streambuf<CharT>  streambuf_type;
    typedef  basic_string<CharT, Traits, Allocator>  string_type;
    typedef  typename istream_type::int_type  int_type;
    typedef  typename string_type::size_type  size_type;

    size_type extracted = 0;

    typename istream_type::sentry  cerb( is, false );
    if( cerb )
    {
        str.erase();
        std::streamsize w = is.width();  //取得輸入流的域寬

        size_type n = w > 0 ? (size_type)w : str.max_size();
        const ctype_t& ct = std::use_facet<ctype_t>( is.getloc() );  //取得現場
        const int_type eof = Traits::eof();  //字符串結束符
        streambuf_type* buf = is.rdbuf();
        int_type c = buf->sgetc();  //取當前字符

        while( extracted < n
               && !Traits::eq_int_type(c, eof)
               && !ct.is(std::ctype_base::space, c) )
        {
            str += Traits::to_char_type( c );
            ++extracted;
            c = buf->snextc();  //跳過當前字符,取下一個字符
        }

        if( Traits::eq_int_type(c, eof) )
            is.setstate( std::ios_base::eofbit );  //設置IO狀態,讀取結束
        is.width( 0 );
    }

    if( extracted == 0 )
        is.setstate( std::ios_base::failbit );  //設置IO狀態,讀取操作失敗

    return is;
}


template< typename CharT, typename Traits, typename Allocator >
std::basic_istream<CharT>&
getline( std::basic_istream<CharT>& is,
         basic_string<CharT, Traits, Allocator>& str,
         CharT delim = '/n' )
{
    typedef  std::ctype<CharT>            ctype_t;
    typedef  std::basic_istream<CharT>    istream_type;
    typedef  std::basic_streambuf<CharT>  streambuf_type;
    typedef  basic_string<CharT, Traits, Allocator>  string_type;
    typedef  typename istream_type::int_type  int_type;
    typedef  typename string_type::size_type  size_type;

    size_type extracted = 0;
    bool testdelim = false;

    typename istream_type::sentry  cerb( is, true );
    if( cerb )
    {
        str.erase();  //將字符串清空

        const int_type eof = Traits::eof();  //字符串結束符
        size_type n = str.max_size();
        streambuf_type* buf = is.rdbuf();
        int_type c = buf->sbumpc();  //將buf->gptr()推進1,即已填入的下一個字符
        int_type idelim = Traits::to_int_type( delim );
        testdelim = Traits::eq_int_type( c, idelim );

        while( extracted <= n
               && !Traits::eq_int_type(c, eof) && !testdelim )
        {
            str += Traits::to_char_type( c );
            ++extracted;
            c = buf->sbumpc();
            testdelim = Traits::eq_int_type( c, idelim );  //下一個字符是否是結束符
        }

        if( Traits::eq_int_type(c, eof) )
            is.setstate( std::ios_base::eofbit );
        is.width( 0 );
    }

    if( extracted == 0 && !testdelim )
        is.setstate( std::ios_base::failbit );

    return is;
}

//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------

template< typename CharT, typename Traits, typename Allocator >
inline std::basic_ostream<CharT>&
operator<<( std::basic_ostream<CharT>& os,
            const optm_string<CharT, Traits, Allocator>& str )
{
    return os.write( str.data(), str.size() );
}


template< typename CharT, typename Traits, typename Allocator >
std::basic_istream<CharT>&
operator>>( std::basic_istream<CharT>& is,
            optm_string<CharT, Traits, Allocator>& str )
{
    typedef  std::ctype<CharT>            ctype_t;
    typedef  std::basic_istream<CharT>    istream_type;
    typedef  std::basic_streambuf<CharT>  streambuf_type;
    typedef  optm_string<CharT, Traits, Allocator>  string_type;
    typedef  typename istream_type::int_type  int_type;
    typedef  typename string_type::size_type  size_type;

    size_type extracted = 0;

    typename istream_type::sentry  cerb( is, false );
    if( cerb )
    {
        str.erase();
        std::streamsize w = is.width();
        size_type n = w > 0 ? (size_type)w : str.max_size();

        const ctype_t& ct = std::use_facet<ctype_t>( is.getloc() );
        const int_type eof = Traits::eof();
        streambuf_type* buf = is.rdbuf();
        int_type c = buf->sgetc();

        while( extracted < n
               && !Traits::eq_int_type(c, eof)
               && !ct.is(std::ctype_base::space, c) )
        {
            str += Traits::to_char_type( c );
            ++extracted;
            c = buf->snextc();
        }

        if( Traits::eq_int_type(c, eof) )
            is.setstate( std::ios_base::eofbit );
        is.width( 0 );
    }

    if( extracted == 0 )
        is.setstate( std::ios_base::failbit );

    return is;
}


template< typename CharT, typename Traits, typename Allocator >
std::basic_istream<CharT>&
getline( std::basic_istream<CharT>& is,
         optm_string<CharT, Traits, Allocator>& str,
         CharT delim = '/n' )
{
    typedef  std::ctype<CharT>            ctype_t;
    typedef  std::basic_istream<CharT>    istream_type;
    typedef  std::basic_streambuf<CharT>  streambuf_type;
    typedef  optm_string<CharT, Traits, Allocator>  string_type;
    typedef  typename istream_type::int_type  int_type;
    typedef  typename string_type::size_type  size_type;

    size_type extracted = 0;
    bool testdelim = false;

    typename istream_type::sentry  cerb( is, true );
    if( cerb )
    {
        str.erase();

        const int_type eof = Traits::eof();
        size_type n = str.max_size();
        streambuf_type* buf = is.rdbuf();
        int_type c = buf->sbumpc();
        int_type idelim = Traits::to_int_type( delim );
        testdelim = Traits::eq_int_type( c, idelim );

        while( extracted <= n
               && !Traits::eq_int_type(c, eof) && !testdelim )
        {
            str += Traits::to_char_type( c );
            ++extracted;
            c = buf->sbumpc();
            testdelim = Traits::eq_int_type( c, idelim );
        }

        if( Traits::eq_int_type(c, eof) )
            is.setstate( std::ios_base::eofbit );
        is.width( 0 );
    }

    if( extracted == 0 && !testdelim )
        is.setstate( std::ios_base::failbit );

    return is;
}

//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
__MACRO_CPLUSPLUS_YOUNG_LIBRARY_END_NAMESPACE__
#endif
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------


發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章