二手車預測:task2:數據分佈

2.1 EDA目標

  • EDA的價值主要在於熟悉數據集,瞭解數據集,對數據集進行驗證來確定所獲得數據集可以用於接下來的機器學習或者深度學習使用。

  • 當了解了數據集之後我們下一步就是要去了解變量間的相互關係以及變量與預測值之間的存在關係。

  • 引導數據科學從業者進行數據處理以及特徵工程的步驟,使數據集的結構和特徵集讓接下來的預測問題更加可靠。

  • 完成對於數據的探索性分析,並對於數據進行一些圖表或者文字總結並打卡。

2.2 內容介紹

  1. 載入各種數據科學以及可視化庫:
    • 數據科學庫 pandas、numpy、scipy;
    • 可視化庫 matplotlib、seabon;
    • 其他;
  2. 載入數據:
    • 載入訓練集和測試集;
    • 簡略觀察數據(head()+shape);
  3. 數據總覽:
    • 通過describe()來熟悉數據的相關統計量
    • 通過info()來熟悉數據類型
  4. 判斷數據缺失和異常
    • 查看每列的存在nan情況
    • 異常值檢測
  5. 瞭解預測值的分佈
    • 總體分佈概況(無界約翰遜分佈等)
    • 查看skewness and kurtosis
    • 查看預測值的具體頻數
  6. 特徵分爲類別特徵和數字特徵,並對類別特徵查看unique分佈
  7. 數字特徵分析
    • 相關性分析
    • 查看幾個特徵得 偏度和峯值
    • 每個數字特徵得分佈可視化
    • 數字特徵相互之間的關係可視化
    • 多變量互相迴歸關係可視化
  8. 類型特徵分析
    • unique分佈
    • 類別特徵箱形圖可視化
    • 類別特徵的小提琴圖可視化
    • 類別特徵的柱形圖可視化類別
    • 特徵的每個類別頻數可視化(count_plot)
  9. 用pandas_profiling生成數據報告

導入包

#coding:utf-8
#導入warnings包,利用過濾器來實現忽略警告語句。
!pip install missingno
import warnings
warnings.filterwarnings('ignore')

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import missingno as msno# 缺失值分析的代碼
Collecting missingno
  Downloading https://files.pythonhosted.org/packages/2b/de/6e4dd6d720c49939544352155dc06a08c9f7e4271aa631a559dfbeaaf9d4/missingno-0.4.2-py3-none-any.whl
Requirement already satisfied: numpy in /home/ach/anaconda3/lib/python3.7/site-packages (from missingno) (1.17.2)
Requirement already satisfied: matplotlib in /home/ach/anaconda3/lib/python3.7/site-packages (from missingno) (3.1.1)
Requirement already satisfied: scipy in /home/ach/anaconda3/lib/python3.7/site-packages (from missingno) (1.3.1)
Requirement already satisfied: seaborn in /home/ach/anaconda3/lib/python3.7/site-packages (from missingno) (0.9.0)
Requirement already satisfied: cycler>=0.10 in /home/ach/anaconda3/lib/python3.7/site-packages (from matplotlib->missingno) (0.10.0)
Requirement already satisfied: kiwisolver>=1.0.1 in /home/ach/anaconda3/lib/python3.7/site-packages (from matplotlib->missingno) (1.1.0)
Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /home/ach/anaconda3/lib/python3.7/site-packages (from matplotlib->missingno) (2.4.2)
Requirement already satisfied: python-dateutil>=2.1 in /home/ach/anaconda3/lib/python3.7/site-packages (from matplotlib->missingno) (2.8.0)
Requirement already satisfied: pandas>=0.15.2 in /home/ach/anaconda3/lib/python3.7/site-packages (from seaborn->missingno) (0.25.1)
Requirement already satisfied: six in /home/ach/anaconda3/lib/python3.7/site-packages (from cycler>=0.10->matplotlib->missingno) (1.12.0)
Requirement already satisfied: setuptools in /home/ach/anaconda3/lib/python3.7/site-packages (from kiwisolver>=1.0.1->matplotlib->missingno) (41.4.0)
Requirement already satisfied: pytz>=2017.2 in /home/ach/anaconda3/lib/python3.7/site-packages (from pandas>=0.15.2->seaborn->missingno) (2019.3)
Installing collected packages: missingno
Successfully installed missingno-0.4.2

導入數據

## 1) 載入訓練集和測試集;
Train_data = pd.read_csv('/home/ach/下載/數據挖掘/used_car_train_20200313.csv', sep=' ')
Test_data = pd.read_csv('/home/ach/下載/數據挖掘/used_car_testA_20200313.csv', sep=' ')

所有特徵集均脫敏處理(方便大家觀看)

  • name - 汽車編碼
  • regDate - 汽車註冊時間
  • model - 車型編碼
  • brand - 品牌
  • bodyType - 車身類型
  • fuelType - 燃油類型
  • gearbox - 變速箱
  • power - 汽車功率
  • kilometer - 汽車行駛公里
  • notRepairedDamage - 汽車有尚未修復的損壞
  • regionCode - 看車地區編碼
  • seller - 銷售方
  • offerType - 報價類型
  • creatDate - 廣告發布時間
  • price - 汽車價格
  • v_0’, ‘v_1’, ‘v_2’, ‘v_3’, ‘v_4’, ‘v_5’, ‘v_6’, ‘v_7’, ‘v_8’, ‘v_9’, ‘v_10’, ‘v_11’, ‘v_12’, ‘v_13’,‘v_14’(根據汽車的評論、標籤等大量信息得到的embedding向量)【人工構造 匿名特徵】
#The tail() function is used to return the last n rows. 
## 2) 簡略觀察數據(head()+shape)
Train_data.head().append(Train_data.tail())
SaleID name regDate model brand bodyType fuelType gearbox power kilometer ... v_5 v_6 v_7 v_8 v_9 v_10 v_11 v_12 v_13 v_14
0 0 736 20040402 30.0 6 1.0 0.0 0.0 60 12.5 ... 0.235676 0.101988 0.129549 0.022816 0.097462 -2.881803 2.804097 -2.420821 0.795292 0.914762
1 1 2262 20030301 40.0 1 2.0 0.0 0.0 0 15.0 ... 0.264777 0.121004 0.135731 0.026597 0.020582 -4.900482 2.096338 -1.030483 -1.722674 0.245522
2 2 14874 20040403 115.0 15 1.0 0.0 0.0 163 12.5 ... 0.251410 0.114912 0.165147 0.062173 0.027075 -4.846749 1.803559 1.565330 -0.832687 -0.229963
3 3 71865 19960908 109.0 10 0.0 0.0 1.0 193 15.0 ... 0.274293 0.110300 0.121964 0.033395 0.000000 -4.509599 1.285940 -0.501868 -2.438353 -0.478699
4 4 111080 20120103 110.0 5 1.0 0.0 0.0 68 5.0 ... 0.228036 0.073205 0.091880 0.078819 0.121534 -1.896240 0.910783 0.931110 2.834518 1.923482
149995 149995 163978 20000607 121.0 10 4.0 0.0 1.0 163 15.0 ... 0.280264 0.000310 0.048441 0.071158 0.019174 1.988114 -2.983973 0.589167 -1.304370 -0.302592
149996 149996 184535 20091102 116.0 11 0.0 0.0 0.0 125 10.0 ... 0.253217 0.000777 0.084079 0.099681 0.079371 1.839166 -2.774615 2.553994 0.924196 -0.272160
149997 149997 147587 20101003 60.0 11 1.0 1.0 0.0 90 6.0 ... 0.233353 0.000705 0.118872 0.100118 0.097914 2.439812 -1.630677 2.290197 1.891922 0.414931
149998 149998 45907 20060312 34.0 10 3.0 1.0 0.0 156 15.0 ... 0.256369 0.000252 0.081479 0.083558 0.081498 2.075380 -2.633719 1.414937 0.431981 -1.659014
149999 149999 177672 19990204 19.0 28 6.0 0.0 1.0 193 12.5 ... 0.284475 0.000000 0.040072 0.062543 0.025819 1.978453 -3.179913 0.031724 -1.483350 -0.342674

10 rows × 31 columns

Train_data.shape
(150000, 31)
Test_data.head().append(Test_data.tail())
SaleID name regDate model brand bodyType fuelType gearbox power kilometer ... v_5 v_6 v_7 v_8 v_9 v_10 v_11 v_12 v_13 v_14
0 150000 66932 20111212 222.0 4 5.0 1.0 1.0 313 15.0 ... 0.264405 0.121800 0.070899 0.106558 0.078867 -7.050969 -0.854626 4.800151 0.620011 -3.664654
1 150001 174960 19990211 19.0 21 0.0 0.0 0.0 75 12.5 ... 0.261745 0.000000 0.096733 0.013705 0.052383 3.679418 -0.729039 -3.796107 -1.541230 -0.757055
2 150002 5356 20090304 82.0 21 0.0 0.0 0.0 109 7.0 ... 0.260216 0.112081 0.078082 0.062078 0.050540 -4.926690 1.001106 0.826562 0.138226 0.754033
3 150003 50688 20100405 0.0 0 0.0 0.0 1.0 160 7.0 ... 0.260466 0.106727 0.081146 0.075971 0.048268 -4.864637 0.505493 1.870379 0.366038 1.312775
4 150004 161428 19970703 26.0 14 2.0 0.0 0.0 75 15.0 ... 0.250999 0.000000 0.077806 0.028600 0.081709 3.616475 -0.673236 -3.197685 -0.025678 -0.101290
49995 199995 20903 19960503 4.0 4 4.0 0.0 0.0 116 15.0 ... 0.284664 0.130044 0.049833 0.028807 0.004616 -5.978511 1.303174 -1.207191 -1.981240 -0.357695
49996 199996 708 19991011 0.0 0 0.0 0.0 0.0 75 15.0 ... 0.268101 0.108095 0.066039 0.025468 0.025971 -3.913825 1.759524 -2.075658 -1.154847 0.169073
49997 199997 6693 20040412 49.0 1 0.0 1.0 1.0 224 15.0 ... 0.269432 0.105724 0.117652 0.057479 0.015669 -4.639065 0.654713 1.137756 -1.390531 0.254420
49998 199998 96900 20020008 27.0 1 0.0 0.0 1.0 334 15.0 ... 0.261152 0.000490 0.137366 0.086216 0.051383 1.833504 -2.828687 2.465630 -0.911682 -2.057353
49999 199999 193384 20041109 166.0 6 1.0 NaN 1.0 68 9.0 ... 0.228730 0.000300 0.103534 0.080625 0.124264 2.914571 -1.135270 0.547628 2.094057 -1.552150

10 rows × 30 columns

Test_data.shape
(50000, 30)

數據概況總覽

## 1) 通過describe()來熟悉數據的相關統計量
Train_data.describe()
SaleID name regDate model brand bodyType fuelType gearbox power kilometer ... v_5 v_6 v_7 v_8 v_9 v_10 v_11 v_12 v_13 v_14
count 150000.000000 150000.000000 1.500000e+05 149999.000000 150000.000000 145494.000000 141320.000000 144019.000000 150000.000000 150000.000000 ... 150000.000000 150000.000000 150000.000000 150000.000000 150000.000000 150000.000000 150000.000000 150000.000000 150000.000000 150000.000000
mean 74999.500000 68349.172873 2.003417e+07 47.129021 8.052733 1.792369 0.375842 0.224943 119.316547 12.597160 ... 0.248204 0.044923 0.124692 0.058144 0.061996 -0.001000 0.009035 0.004813 0.000313 -0.000688
std 43301.414527 61103.875095 5.364988e+04 49.536040 7.864956 1.760640 0.548677 0.417546 177.168419 3.919576 ... 0.045804 0.051743 0.201410 0.029186 0.035692 3.772386 3.286071 2.517478 1.288988 1.038685
min 0.000000 0.000000 1.991000e+07 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.500000 ... 0.000000 0.000000 0.000000 0.000000 0.000000 -9.168192 -5.558207 -9.639552 -4.153899 -6.546556
25% 37499.750000 11156.000000 1.999091e+07 10.000000 1.000000 0.000000 0.000000 0.000000 75.000000 12.500000 ... 0.243615 0.000038 0.062474 0.035334 0.033930 -3.722303 -1.951543 -1.871846 -1.057789 -0.437034
50% 74999.500000 51638.000000 2.003091e+07 30.000000 6.000000 1.000000 0.000000 0.000000 110.000000 15.000000 ... 0.257798 0.000812 0.095866 0.057014 0.058484 1.624076 -0.358053 -0.130753 -0.036245 0.141246
75% 112499.250000 118841.250000 2.007111e+07 66.000000 13.000000 3.000000 1.000000 0.000000 150.000000 15.000000 ... 0.265297 0.102009 0.125243 0.079382 0.087491 2.844357 1.255022 1.776933 0.942813 0.680378
max 149999.000000 196812.000000 2.015121e+07 247.000000 39.000000 7.000000 6.000000 1.000000 19312.000000 15.000000 ... 0.291838 0.151420 1.404936 0.160791 0.222787 12.357011 18.819042 13.847792 11.147669 8.658418

8 rows × 30 columns

Test_data.describe()
SaleID name regDate model brand bodyType fuelType gearbox power kilometer ... v_5 v_6 v_7 v_8 v_9 v_10 v_11 v_12 v_13 v_14
count 50000.000000 50000.000000 5.000000e+04 50000.000000 50000.000000 48587.000000 47107.000000 48090.000000 50000.000000 50000.000000 ... 50000.000000 50000.000000 50000.000000 50000.000000 50000.000000 50000.000000 50000.000000 50000.000000 50000.000000 50000.000000
mean 174999.500000 68542.223280 2.003393e+07 46.844520 8.056240 1.782185 0.373405 0.224350 119.883620 12.595580 ... 0.248669 0.045021 0.122744 0.057997 0.062000 -0.017855 -0.013742 -0.013554 -0.003147 0.001516
std 14433.901067 61052.808133 5.368870e+04 49.469548 7.819477 1.760736 0.546442 0.417158 185.097387 3.908979 ... 0.044601 0.051766 0.195972 0.029211 0.035653 3.747985 3.231258 2.515962 1.286597 1.027360
min 150000.000000 0.000000 1.991000e+07 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.500000 ... 0.000000 0.000000 0.000000 0.000000 0.000000 -9.160049 -5.411964 -8.916949 -4.123333 -6.112667
25% 162499.750000 11203.500000 1.999091e+07 10.000000 1.000000 0.000000 0.000000 0.000000 75.000000 12.500000 ... 0.243762 0.000044 0.062644 0.035084 0.033714 -3.700121 -1.971325 -1.876703 -1.060428 -0.437920
50% 174999.500000 52248.500000 2.003091e+07 29.000000 6.000000 1.000000 0.000000 0.000000 109.000000 15.000000 ... 0.257877 0.000815 0.095828 0.057084 0.058764 1.613212 -0.355843 -0.142779 -0.035956 0.138799
75% 187499.250000 118856.500000 2.007110e+07 65.000000 13.000000 3.000000 1.000000 0.000000 150.000000 15.000000 ... 0.265328 0.102025 0.125438 0.079077 0.087489 2.832708 1.262914 1.764335 0.941469 0.681163
max 199999.000000 196805.000000 2.015121e+07 246.000000 39.000000 7.000000 6.000000 1.000000 20000.000000 15.000000 ... 0.291618 0.153265 1.358813 0.156355 0.214775 12.338872 18.856218 12.950498 5.913273 2.624622

8 rows × 29 columns

## 2) 通過info()來熟悉數據類型
Train_data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150000 entries, 0 to 149999
Data columns (total 31 columns):
SaleID               150000 non-null int64
name                 150000 non-null int64
regDate              150000 non-null int64
model                149999 non-null float64
brand                150000 non-null int64
bodyType             145494 non-null float64
fuelType             141320 non-null float64
gearbox              144019 non-null float64
power                150000 non-null int64
kilometer            150000 non-null float64
notRepairedDamage    150000 non-null object
regionCode           150000 non-null int64
seller               150000 non-null int64
offerType            150000 non-null int64
creatDate            150000 non-null int64
price                150000 non-null int64
v_0                  150000 non-null float64
v_1                  150000 non-null float64
v_2                  150000 non-null float64
v_3                  150000 non-null float64
v_4                  150000 non-null float64
v_5                  150000 non-null float64
v_6                  150000 non-null float64
v_7                  150000 non-null float64
v_8                  150000 non-null float64
v_9                  150000 non-null float64
v_10                 150000 non-null float64
v_11                 150000 non-null float64
v_12                 150000 non-null float64
v_13                 150000 non-null float64
v_14                 150000 non-null float64
dtypes: float64(20), int64(10), object(1)
memory usage: 35.5+ MB
Test_data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 50000 entries, 0 to 49999
Data columns (total 30 columns):
SaleID               50000 non-null int64
name                 50000 non-null int64
regDate              50000 non-null int64
model                50000 non-null float64
brand                50000 non-null int64
bodyType             48587 non-null float64
fuelType             47107 non-null float64
gearbox              48090 non-null float64
power                50000 non-null int64
kilometer            50000 non-null float64
notRepairedDamage    50000 non-null object
regionCode           50000 non-null int64
seller               50000 non-null int64
offerType            50000 non-null int64
creatDate            50000 non-null int64
v_0                  50000 non-null float64
v_1                  50000 non-null float64
v_2                  50000 non-null float64
v_3                  50000 non-null float64
v_4                  50000 non-null float64
v_5                  50000 non-null float64
v_6                  50000 non-null float64
v_7                  50000 non-null float64
v_8                  50000 non-null float64
v_9                  50000 non-null float64
v_10                 50000 non-null float64
v_11                 50000 non-null float64
v_12                 50000 non-null float64
v_13                 50000 non-null float64
v_14                 50000 non-null float64
dtypes: float64(20), int64(9), object(1)
memory usage: 11.4+ MB

缺失值和異常值分析

## 1) 查看每列的存在nan情況
Train_data.isnull().sum()
SaleID                  0
name                    0
regDate                 0
model                   1
brand                   0
bodyType             4506
fuelType             8680
gearbox              5981
power                   0
kilometer               0
notRepairedDamage       0
regionCode              0
seller                  0
offerType               0
creatDate               0
price                   0
v_0                     0
v_1                     0
v_2                     0
v_3                     0
v_4                     0
v_5                     0
v_6                     0
v_7                     0
v_8                     0
v_9                     0
v_10                    0
v_11                    0
v_12                    0
v_13                    0
v_14                    0
dtype: int64
Test_data.isnull().sum()
SaleID                  0
name                    0
regDate                 0
model                   0
brand                   0
bodyType             1413
fuelType             2893
gearbox              1910
power                   0
kilometer               0
notRepairedDamage       0
regionCode              0
seller                  0
offerType               0
creatDate               0
v_0                     0
v_1                     0
v_2                     0
v_3                     0
v_4                     0
v_5                     0
v_6                     0
v_7                     0
v_8                     0
v_9                     0
v_10                    0
v_11                    0
v_12                    0
v_13                    0
v_14                    0
dtype: int64
# nan可視化
missing = Train_data.isnull().sum()
missing = missing[missing > 0]# 取出大於0的
missing.sort_values(inplace=True)# 升序排列
missing.plot.bar()
<matplotlib.axes._subplots.AxesSubplot at 0x7f5add5da890>

[外鏈圖片轉存失敗,源站可能有防盜鏈機制,建議將圖片保存下來直接上傳(img-Rat0Ogt3-1584885647200)(output_19_1.png)]

  • 通過以上兩句可以很直觀的瞭解哪些列存在 “nan”, 並可以把nan的個數打印,主要的目的在於 nan存在的個數是否真的很大,如果很小一般選擇填充,如果使用lgb等樹模型可以直接空缺,讓樹自己去優化,但如果nan存在的過多、可以考慮刪掉
# 可視化看下缺省值
msno.matrix(Train_data.sample(250))
<matplotlib.axes._subplots.AxesSubplot at 0x7f5adc9c3390>

[外鏈圖片轉存失敗,源站可能有防盜鏈機制,建議將圖片保存下來直接上傳(img-1W3ADPqM-1584885647201)(output_21_1.png)]

msno.bar(Train_data.sample(1000))
<matplotlib.axes._subplots.AxesSubplot at 0x7f5adc86b090>

[外鏈圖片轉存失敗,源站可能有防盜鏈機制,建議將圖片保存下來直接上傳(img-yUUKgDZP-1584885647202)(output_22_1.png)]

# 可視化看下缺省值
msno.matrix(Test_data.sample(250))
<matplotlib.axes._subplots.AxesSubplot at 0x7f5ada277450>

[外鏈圖片轉存失敗,源站可能有防盜鏈機制,建議將圖片保存下來直接上傳(img-lBPoeuSV-1584885647203)(output_23_1.png)]

msno.bar(Test_data.sample(1000))
<matplotlib.axes._subplots.AxesSubplot at 0x7f5ada2ca050>

[外鏈圖片轉存失敗,源站可能有防盜鏈機制,建議將圖片保存下來直接上傳(img-KGNRJexG-1584885647204)(output_24_1.png)]

測試集的缺省和訓練集的差不多情況, 可視化有四列有缺省,notRepairedDamage缺省得最多

異常值檢測

Train_data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150000 entries, 0 to 149999
Data columns (total 31 columns):
SaleID               150000 non-null int64
name                 150000 non-null int64
regDate              150000 non-null int64
model                149999 non-null float64
brand                150000 non-null int64
bodyType             145494 non-null float64
fuelType             141320 non-null float64
gearbox              144019 non-null float64
power                150000 non-null int64
kilometer            150000 non-null float64
notRepairedDamage    150000 non-null object
regionCode           150000 non-null int64
seller               150000 non-null int64
offerType            150000 non-null int64
creatDate            150000 non-null int64
price                150000 non-null int64
v_0                  150000 non-null float64
v_1                  150000 non-null float64
v_2                  150000 non-null float64
v_3                  150000 non-null float64
v_4                  150000 non-null float64
v_5                  150000 non-null float64
v_6                  150000 non-null float64
v_7                  150000 non-null float64
v_8                  150000 non-null float64
v_9                  150000 non-null float64
v_10                 150000 non-null float64
v_11                 150000 non-null float64
v_12                 150000 non-null float64
v_13                 150000 non-null float64
v_14                 150000 non-null float64
dtypes: float64(20), int64(10), object(1)
memory usage: 35.5+ MB

可以發現除了notRepairedDamage 爲object類型其他都爲數字 這裏我們把他的幾個不同的值都進行顯示就知道了

Train_data['notRepairedDamage'].value_counts()
0.0    111361
-       24324
1.0     14315
Name: notRepairedDamage, dtype: int64
  • 可以看出來‘ - ’也爲空缺值,因爲很多模型對nan有直接的處理,這裏我們先不做處理,先替換成nan
Train_data['notRepairedDamage'].replace('-', np.nan, inplace=True)
Train_data['notRepairedDamage'].value_counts()
0.0    111361
1.0     14315
Name: notRepairedDamage, dtype: int64
Train_data.isnull().sum()
SaleID                   0
name                     0
regDate                  0
model                    1
brand                    0
bodyType              4506
fuelType              8680
gearbox               5981
power                    0
kilometer                0
notRepairedDamage    24324
regionCode               0
seller                   0
offerType                0
creatDate                0
price                    0
v_0                      0
v_1                      0
v_2                      0
v_3                      0
v_4                      0
v_5                      0
v_6                      0
v_7                      0
v_8                      0
v_9                      0
v_10                     0
v_11                     0
v_12                     0
v_13                     0
v_14                     0
dtype: int64

特徵傾斜檢測

Train_data["seller"].value_counts()
0    149999
1         1
Name: seller, dtype: int64
Train_data["offerType"].value_counts()
0    150000
Name: offerType, dtype: int64
del Train_data["seller"]
del Train_data["offerType"]
del Test_data["seller"]
del Test_data["offerType"]

預測值分佈

Train_data['price']
0         1850
1         3600
2         6222
3         2400
4         5200
          ... 
149995    5900
149996    9500
149997    7500
149998    4999
149999    4700
Name: price, Length: 150000, dtype: int64
Train_data['price'].value_counts()
500      2337
1500     2158
1200     1922
1000     1850
2500     1821
         ... 
25321       1
8886        1
8801        1
37920       1
8188        1
Name: price, Length: 3763, dtype: int64
## 1) 總體分佈概況(無界約翰遜分佈等)
import scipy.stats as st
y = Train_data['price']
plt.figure(1); plt.title('Johnson SU')
sns.distplot(y, kde=False, fit=st.johnsonsu)
plt.figure(2); plt.title('Normal')
sns.distplot(y, kde=False, fit=st.norm)
plt.figure(3); plt.title('Log Normal')
sns.distplot(y, kde=False, fit=st.lognorm)
<matplotlib.axes._subplots.AxesSubplot at 0x7f5ad9e69110>

[外鏈圖片轉存失敗,源站可能有防盜鏈機制,建議將圖片保存下來直接上傳(img-zC6ld8ar-1584885647204)(output_41_1.png)]

[外鏈圖片轉存失敗,源站可能有防盜鏈機制,建議將圖片保存下來直接上傳(img-nLEqA09J-1584885647205)(output_41_2.png)]

[外鏈圖片轉存失敗,源站可能有防盜鏈機制,建議將圖片保存下來直接上傳(img-kS7jNVAq-1584885647206)(output_41_3.png)]

  • 價格不服從正態分佈,所以在進行迴歸之前,它必須進行轉換。雖然對數變換做得很好,但最佳擬合是無界約翰遜分佈
## 2) 查看skewness and kurtosis
sns.distplot(Train_data['price']);
print("Skewness: %f" % Train_data['price'].skew())
print("Kurtosis: %f" % Train_data['price'].kurt())
Skewness: 3.346487
Kurtosis: 18.995183

[外鏈圖片轉存失敗,源站可能有防盜鏈機制,建議將圖片保存下來直接上傳(img-bEUJjMK9-1584885647206)(output_43_1.png)]

Train_data.skew(), Train_data.kurt()
(SaleID               6.017846e-17
 name                 5.576058e-01
 regDate              2.849508e-02
 model                1.484388e+00
 brand                1.150760e+00
 bodyType             9.915299e-01
 fuelType             1.595486e+00
 gearbox              1.317514e+00
 power                6.586318e+01
 kilometer           -1.525921e+00
 notRepairedDamage    2.430640e+00
 regionCode           6.888812e-01
 creatDate           -7.901331e+01
 price                3.346487e+00
 v_0                 -1.316712e+00
 v_1                  3.594543e-01
 v_2                  4.842556e+00
 v_3                  1.062920e-01
 v_4                  3.679890e-01
 v_5                 -4.737094e+00
 v_6                  3.680730e-01
 v_7                  5.130233e+00
 v_8                  2.046133e-01
 v_9                  4.195007e-01
 v_10                 2.522046e-02
 v_11                 3.029146e+00
 v_12                 3.653576e-01
 v_13                 2.679152e-01
 v_14                -1.186355e+00
 dtype: float64, SaleID                 -1.200000
 name                   -1.039945
 regDate                -0.697308
 model                   1.740483
 brand                   1.076201
 bodyType                0.206937
 fuelType                5.880049
 gearbox                -0.264161
 power                5733.451054
 kilometer               1.141934
 notRepairedDamage       3.908072
 regionCode             -0.340832
 creatDate            6881.080328
 price                  18.995183
 v_0                     3.993841
 v_1                    -1.753017
 v_2                    23.860591
 v_3                    -0.418006
 v_4                    -0.197295
 v_5                    22.934081
 v_6                    -1.742567
 v_7                    25.845489
 v_8                    -0.636225
 v_9                    -0.321491
 v_10                   -0.577935
 v_11                   12.568731
 v_12                    0.268937
 v_13                   -0.438274
 v_14                    2.393526
 dtype: float64)
sns.distplot(Train_data.skew(),color='blue',axlabel ='Skewness')
<matplotlib.axes._subplots.AxesSubplot at 0x7f5ad8526510>

[外鏈圖片轉存失敗,源站可能有防盜鏈機制,建議將圖片保存下來直接上傳(img-5dij5RqL-1584885647207)(output_45_1.png)]

sns.distplot(Train_data.kurt(),color='orange',axlabel ='Kurtness')
<matplotlib.axes._subplots.AxesSubplot at 0x7f5ad83da590>

[外鏈圖片轉存失敗,源站可能有防盜鏈機制,建議將圖片保存下來直接上傳(img-U89djmGc-1584885647208)(output_46_1.png)]

skew、kurt說明參考https://www.cnblogs.com/wyy1480/p/10474046.html

## 3) 查看預測值的具體頻數
plt.hist(Train_data['price'], orientation = 'vertical',histtype = 'bar', color ='red')
plt.show()

[外鏈圖片轉存失敗,源站可能有防盜鏈機制,建議將圖片保存下來直接上傳(img-wvP15hTK-1584885647208)(output_48_0.png)]

查看頻數, 大於20000得值極少,其實這裏也可以把這些當作特殊得值(異常值)直接用填充或者刪掉,再前面進行

# log變換 z之後的分佈較均勻,可以進行log變換進行預測,這也是預測問題常用的trick
plt.hist(np.log(Train_data['price']), orientation = 'vertical',histtype = 'bar', color ='red') 
plt.show()

[外鏈圖片轉存失敗,源站可能有防盜鏈機制,建議將圖片保存下來直接上傳(img-mSQDYK0r-1584885647209)(output_50_0.png)]

數據類型分析

  • name - 汽車編碼
  • regDate - 汽車註冊時間
  • model - 車型編碼
  • brand - 品牌
  • bodyType - 車身類型
  • fuelType - 燃油類型
  • gearbox - 變速箱
  • power - 汽車功率
  • kilometer - 汽車行駛公里
  • notRepairedDamage - 汽車有尚未修復的損壞
  • regionCode - 看車地區編碼
  • seller - 銷售方 【以刪】
  • offerType - 報價類型 【以刪】
  • creatDate - 廣告發布時間
  • price - 汽車價格
  • v_0’, ‘v_1’, ‘v_2’, ‘v_3’, ‘v_4’, ‘v_5’, ‘v_6’, ‘v_7’, ‘v_8’, ‘v_9’, ‘v_10’, ‘v_11’, ‘v_12’, ‘v_13’,‘v_14’(根據汽車的評論、標籤等大量信息得到的embedding向量)【人工構造 匿名特徵】
# 分離label即預測值
Y_train = Train_data['price']
# 這個區別方式適用於沒有直接label coding的數據
# 這裏不適用,需要人爲根據實際含義來區分
# 數字特徵
# numeric_features = Train_data.select_dtypes(include=[np.number])
# numeric_features.columns
# # 類型特徵
# categorical_features = Train_data.select_dtypes(include=[np.object])
# categorical_features.columns
#數字特徵和分類特徵
numeric_features = ['power', 'kilometer', 'v_0', 'v_1', 'v_2', 'v_3', 'v_4', 'v_5', 'v_6', 'v_7', 'v_8', 'v_9', 'v_10', 'v_11', 'v_12', 'v_13','v_14' ]

categorical_features = ['name', 'model', 'brand', 'bodyType', 'fuelType', 'gearbox', 'notRepairedDamage', 'regionCode',]
# 特徵nunique分佈
for cat_fea in categorical_features:
    print(cat_fea + "的特徵分佈如下:")
    print("{}特徵有個{}不同的值".format(cat_fea, Train_data[cat_fea].nunique()))
    print(Train_data[cat_fea].value_counts())
name的特徵分佈如下:
name特徵有個99662不同的值
708       282
387       282
55        280
1541      263
203       233
         ... 
5074        1
7123        1
11221       1
13270       1
174485      1
Name: name, Length: 99662, dtype: int64
model的特徵分佈如下:
model特徵有個248不同的值
0.0      11762
19.0      9573
4.0       8445
1.0       6038
29.0      5186
         ...  
245.0        2
209.0        2
240.0        2
242.0        2
247.0        1
Name: model, Length: 248, dtype: int64
brand的特徵分佈如下:
brand特徵有個40不同的值
0     31480
4     16737
14    16089
10    14249
1     13794
6     10217
9      7306
5      4665
13     3817
11     2945
3      2461
7      2361
16     2223
8      2077
25     2064
27     2053
21     1547
15     1458
19     1388
20     1236
12     1109
22     1085
26      966
30      940
17      913
24      772
28      649
32      592
29      406
37      333
2       321
31      318
18      316
36      228
34      227
33      218
23      186
35      180
38       65
39        9
Name: brand, dtype: int64
bodyType的特徵分佈如下:
bodyType特徵有個8不同的值
0.0    41420
1.0    35272
2.0    30324
3.0    13491
4.0     9609
5.0     7607
6.0     6482
7.0     1289
Name: bodyType, dtype: int64
fuelType的特徵分佈如下:
fuelType特徵有個7不同的值
0.0    91656
1.0    46991
2.0     2212
3.0      262
4.0      118
5.0       45
6.0       36
Name: fuelType, dtype: int64
gearbox的特徵分佈如下:
gearbox特徵有個2不同的值
0.0    111623
1.0     32396
Name: gearbox, dtype: int64
notRepairedDamage的特徵分佈如下:
notRepairedDamage特徵有個2不同的值
0.0    111361
1.0     14315
Name: notRepairedDamage, dtype: int64
regionCode的特徵分佈如下:
regionCode特徵有個7905不同的值
419     369
764     258
125     137
176     136
462     134
       ... 
6414      1
7063      1
4239      1
5931      1
7267      1
Name: regionCode, Length: 7905, dtype: int64
# 特徵nunique分佈
for cat_fea in categorical_features:
    print(cat_fea + "的特徵分佈如下:")
    print("{}特徵有個{}不同的值".format(cat_fea, Test_data[cat_fea].nunique()))
    print(Test_data[cat_fea].value_counts())
name的特徵分佈如下:
name特徵有個37453不同的值
55       97
708      96
387      95
1541     88
713      74
         ..
22270     1
89855     1
42752     1
48899     1
11808     1
Name: name, Length: 37453, dtype: int64
model的特徵分佈如下:
model特徵有個247不同的值
0.0      3896
19.0     3245
4.0      3007
1.0      1981
29.0     1742
         ... 
242.0       1
240.0       1
244.0       1
243.0       1
246.0       1
Name: model, Length: 247, dtype: int64
brand的特徵分佈如下:
brand特徵有個40不同的值
0     10348
4      5763
14     5314
10     4766
1      4532
6      3502
9      2423
5      1569
13     1245
11      919
7       795
3       773
16      771
8       704
25      695
27      650
21      544
15      511
20      450
19      450
12      389
22      363
30      324
17      317
26      303
24      268
28      225
32      193
29      117
31      115
18      106
2       104
37       92
34       77
33       76
36       67
23       62
35       53
38       23
39        2
Name: brand, dtype: int64
bodyType的特徵分佈如下:
bodyType特徵有個8不同的值
0.0    13985
1.0    11882
2.0     9900
3.0     4433
4.0     3303
5.0     2537
6.0     2116
7.0      431
Name: bodyType, dtype: int64
fuelType的特徵分佈如下:
fuelType特徵有個7不同的值
0.0    30656
1.0    15544
2.0      774
3.0       72
4.0       37
6.0       14
5.0       10
Name: fuelType, dtype: int64
gearbox的特徵分佈如下:
gearbox特徵有個2不同的值
0.0    37301
1.0    10789
Name: gearbox, dtype: int64
notRepairedDamage的特徵分佈如下:
notRepairedDamage特徵有個3不同的值
0.0    37249
-       8031
1.0     4720
Name: notRepairedDamage, dtype: int64
regionCode的特徵分佈如下:
regionCode特徵有個6971不同的值
419     146
764      78
188      52
125      51
759      51
       ... 
7753      1
7463      1
7230      1
826       1
112       1
Name: regionCode, Length: 6971, dtype: int64

數字特徵分析

numeric_features.append('price')
numeric_features
['power',
 'kilometer',
 'v_0',
 'v_1',
 'v_2',
 'v_3',
 'v_4',
 'v_5',
 'v_6',
 'v_7',
 'v_8',
 'v_9',
 'v_10',
 'v_11',
 'v_12',
 'v_13',
 'v_14',
 'price']
Train_data.head()
SaleID name regDate model brand bodyType fuelType gearbox power kilometer ... v_5 v_6 v_7 v_8 v_9 v_10 v_11 v_12 v_13 v_14
0 0 736 20040402 30.0 6 1.0 0.0 0.0 60 12.5 ... 0.235676 0.101988 0.129549 0.022816 0.097462 -2.881803 2.804097 -2.420821 0.795292 0.914762
1 1 2262 20030301 40.0 1 2.0 0.0 0.0 0 15.0 ... 0.264777 0.121004 0.135731 0.026597 0.020582 -4.900482 2.096338 -1.030483 -1.722674 0.245522
2 2 14874 20040403 115.0 15 1.0 0.0 0.0 163 12.5 ... 0.251410 0.114912 0.165147 0.062173 0.027075 -4.846749 1.803559 1.565330 -0.832687 -0.229963
3 3 71865 19960908 109.0 10 0.0 0.0 1.0 193 15.0 ... 0.274293 0.110300 0.121964 0.033395 0.000000 -4.509599 1.285940 -0.501868 -2.438353 -0.478699
4 4 111080 20120103 110.0 5 1.0 0.0 0.0 68 5.0 ... 0.228036 0.073205 0.091880 0.078819 0.121534 -1.896240 0.910783 0.931110 2.834518 1.923482

5 rows × 29 columns

## 1) 相關性分析
price_numeric = Train_data[numeric_features]
correlation = price_numeric.corr()
print(correlation['price'].sort_values(ascending = False),'\n')
price        1.000000
v_12         0.692823
v_8          0.685798
v_0          0.628397
power        0.219834
v_5          0.164317
v_2          0.085322
v_6          0.068970
v_1          0.060914
v_14         0.035911
v_13        -0.013993
v_7         -0.053024
v_4         -0.147085
v_9         -0.206205
v_10        -0.246175
v_11        -0.275320
kilometer   -0.440519
v_3         -0.730946
Name: price, dtype: float64 
f , ax = plt.subplots(figsize = (7, 7))

plt.title('Correlation of Numeric Features with Price',y=1,size=16)

sns.heatmap(correlation,square = True,  vmax=0.8)
<matplotlib.axes._subplots.AxesSubplot at 0x7f5ad826aa10>

[外鏈圖片轉存失敗,源站可能有防盜鏈機制,建議將圖片保存下來直接上傳(img-bvDY9ToA-1584885647210)(output_63_1.png)]

del price_numeric['price']
## 2) 查看幾個特徵得 偏度和峯值
for col in numeric_features:
    print('{:15}'.format(col), 
          'Skewness: {:05.2f}'.format(Train_data[col].skew()) , 
          '   ' ,
          'Kurtosis: {:06.2f}'.format(Train_data[col].kurt())  
         )
power           Skewness: 65.86     Kurtosis: 5733.45
kilometer       Skewness: -1.53     Kurtosis: 001.14
v_0             Skewness: -1.32     Kurtosis: 003.99
v_1             Skewness: 00.36     Kurtosis: -01.75
v_2             Skewness: 04.84     Kurtosis: 023.86
v_3             Skewness: 00.11     Kurtosis: -00.42
v_4             Skewness: 00.37     Kurtosis: -00.20
v_5             Skewness: -4.74     Kurtosis: 022.93
v_6             Skewness: 00.37     Kurtosis: -01.74
v_7             Skewness: 05.13     Kurtosis: 025.85
v_8             Skewness: 00.20     Kurtosis: -00.64
v_9             Skewness: 00.42     Kurtosis: -00.32
v_10            Skewness: 00.03     Kurtosis: -00.58
v_11            Skewness: 03.03     Kurtosis: 012.57
v_12            Skewness: 00.37     Kurtosis: 000.27
v_13            Skewness: 00.27     Kurtosis: -00.44
v_14            Skewness: -1.19     Kurtosis: 002.39
price           Skewness: 03.35     Kurtosis: 019.00
## 3) 每個數字特徵得分佈可視化
f = pd.melt(Train_data, value_vars=numeric_features)
g = sns.FacetGrid(f, col="variable",  col_wrap=2, sharex=False, sharey=False)
g = g.map(sns.distplot, "value")

[外鏈圖片轉存失敗,源站可能有防盜鏈機制,建議將圖片保存下來直接上傳(img-by4pagHn-1584885647210)(output_66_0.png)]

可以看出匿名特徵相對分佈均勻

## 4) 數字特徵相互之間的關係可視化
sns.set()
columns = ['price', 'v_12', 'v_8' , 'v_0', 'power', 'v_5',  'v_2', 'v_6', 'v_1', 'v_14']
sns.pairplot(Train_data[columns],size = 2 ,kind ='scatter',diag_kind='kde')
plt.show()

[外鏈圖片轉存失敗,源站可能有防盜鏈機制,建議將圖片保存下來直接上傳(img-Ylf7L29K-1584885647211)(output_68_0.png)]

Train_data.columns
Index(['SaleID', 'name', 'regDate', 'model', 'brand', 'bodyType', 'fuelType',
       'gearbox', 'power', 'kilometer', 'notRepairedDamage', 'regionCode',
       'creatDate', 'price', 'v_0', 'v_1', 'v_2', 'v_3', 'v_4', 'v_5', 'v_6',
       'v_7', 'v_8', 'v_9', 'v_10', 'v_11', 'v_12', 'v_13', 'v_14'],
      dtype='object')

此處是多變量之間的關係可視化,可視化更多學習可參考很不錯的文章 https://www.jianshu.com/p/6e18d21a4cad

## 5) 多變量互相迴歸關係可視化
fig, ((ax1, ax2), (ax3, ax4), (ax5, ax6), (ax7, ax8), (ax9, ax10)) = plt.subplots(nrows=5, ncols=2, figsize=(24, 20))
# ['v_12', 'v_8' , 'v_0', 'power', 'v_5',  'v_2', 'v_6', 'v_1', 'v_14']
v_12_scatter_plot = pd.concat([Y_train,Train_data['v_12']],axis = 1)
sns.regplot(x='v_12',y = 'price', data = v_12_scatter_plot,scatter= True, fit_reg=True, ax=ax1)

v_8_scatter_plot = pd.concat([Y_train,Train_data['v_8']],axis = 1)
sns.regplot(x='v_8',y = 'price',data = v_8_scatter_plot,scatter= True, fit_reg=True, ax=ax2)

v_0_scatter_plot = pd.concat([Y_train,Train_data['v_0']],axis = 1)
sns.regplot(x='v_0',y = 'price',data = v_0_scatter_plot,scatter= True, fit_reg=True, ax=ax3)

power_scatter_plot = pd.concat([Y_train,Train_data['power']],axis = 1)
sns.regplot(x='power',y = 'price',data = power_scatter_plot,scatter= True, fit_reg=True, ax=ax4)

v_5_scatter_plot = pd.concat([Y_train,Train_data['v_5']],axis = 1)
sns.regplot(x='v_5',y = 'price',data = v_5_scatter_plot,scatter= True, fit_reg=True, ax=ax5)

v_2_scatter_plot = pd.concat([Y_train,Train_data['v_2']],axis = 1)
sns.regplot(x='v_2',y = 'price',data = v_2_scatter_plot,scatter= True, fit_reg=True, ax=ax6)

v_6_scatter_plot = pd.concat([Y_train,Train_data['v_6']],axis = 1)
sns.regplot(x='v_6',y = 'price',data = v_6_scatter_plot,scatter= True, fit_reg=True, ax=ax7)

v_1_scatter_plot = pd.concat([Y_train,Train_data['v_1']],axis = 1)
sns.regplot(x='v_1',y = 'price',data = v_1_scatter_plot,scatter= True, fit_reg=True, ax=ax8)

v_14_scatter_plot = pd.concat([Y_train,Train_data['v_14']],axis = 1)
sns.regplot(x='v_14',y = 'price',data = v_14_scatter_plot,scatter= True, fit_reg=True, ax=ax9)

v_13_scatter_plot = pd.concat([Y_train,Train_data['v_13']],axis = 1)
sns.regplot(x='v_13',y = 'price',data = v_13_scatter_plot,scatter= True, fit_reg=True, ax=ax10)

<matplotlib.axes._subplots.AxesSubplot at 0x7f5acf0c9ad0>

[外鏈圖片轉存失敗,源站可能有防盜鏈機制,建議將圖片保存下來直接上傳(img-zWyh16N5-1584885647212)(output_71_1.png)]

類別特徵分析

## 1) unique分佈
for fea in categorical_features:
    print(Train_data[fea].nunique())
99662
248
40
8
7
2
2
7905
categorical_features
['name',
 'model',
 'brand',
 'bodyType',
 'fuelType',
 'gearbox',
 'notRepairedDamage',
 'regionCode']
## 2) 類別特徵箱形圖可視化

# 因爲 name和 regionCode的類別太稀疏了,這裏我們把不稀疏的幾類畫一下
categorical_features = ['model',
 'brand',
 'bodyType',
 'fuelType',
 'gearbox',
 'notRepairedDamage']
for c in categorical_features:
    Train_data[c] = Train_data[c].astype('category')
    if Train_data[c].isnull().any():#df.isnull().any()則會判斷哪些”列”存在缺失值
        Train_data[c] = Train_data[c].cat.add_categories(['MISSING'])#添加新的類別
        Train_data[c] = Train_data[c].fillna('MISSING')

def boxplot(x, y, **kwargs):
    sns.boxplot(x=x, y=y)
    x=plt.xticks(rotation=90)

f = pd.melt(Train_data, id_vars=['price'], value_vars=categorical_features)
g = sns.FacetGrid(f, col="variable",  col_wrap=2, sharex=False, sharey=False, size=5)
g = g.map(boxplot, "value", "price")# 這個函數不知道什麼意思

[外鏈圖片轉存失敗,源站可能有防盜鏈機制,建議將圖片保存下來直接上傳(img-lVfH0HBX-1584885647212)(output_75_0.png)]

Train_data.columns
Index(['SaleID', 'name', 'regDate', 'model', 'brand', 'bodyType', 'fuelType',
       'gearbox', 'power', 'kilometer', 'notRepairedDamage', 'regionCode',
       'creatDate', 'price', 'v_0', 'v_1', 'v_2', 'v_3', 'v_4', 'v_5', 'v_6',
       'v_7', 'v_8', 'v_9', 'v_10', 'v_11', 'v_12', 'v_13', 'v_14'],
      dtype='object')
## 3) 類別特徵的小提琴圖可視化
catg_list = categorical_features
target = 'price'
for catg in catg_list :
    sns.violinplot(x=catg, y=target, data=Train_data)
    plt.show()

[外鏈圖片轉存失敗,源站可能有防盜鏈機制,建議將圖片保存下來直接上傳(img-XhN6yWh9-1584885647213)(output_77_0.png)]

[外鏈圖片轉存失敗,源站可能有防盜鏈機制,建議將圖片保存下來直接上傳(img-h8kBD1q7-1584885647214)(output_77_1.png)]

[外鏈圖片轉存失敗,源站可能有防盜鏈機制,建議將圖片保存下來直接上傳(img-37IwCCm6-1584885647214)(output_77_2.png)]

[外鏈圖片轉存失敗,源站可能有防盜鏈機制,建議將圖片保存下來直接上傳(img-0Fy3KPHQ-1584885647215)(output_77_3.png)]

[外鏈圖片轉存失敗,源站可能有防盜鏈機制,建議將圖片保存下來直接上傳(img-pc7W07IG-1584885647216)(output_77_4.png)]

[外鏈圖片轉存失敗,源站可能有防盜鏈機制,建議將圖片保存下來直接上傳(img-1MuF3E3z-1584885647216)(output_77_5.png)]

categorical_features = ['model',
 'brand',
 'bodyType',
 'fuelType',
 'gearbox',
 'notRepairedDamage']
## 4) 類別特徵的柱形圖可視化
def bar_plot(x, y, **kwargs):
    sns.barplot(x=x, y=y)
    x=plt.xticks(rotation=90)

f = pd.melt(Train_data, id_vars=['price'], value_vars=categorical_features)
g = sns.FacetGrid(f, col="variable",  col_wrap=2, sharex=False, sharey=False, size=5)
g = g.map(bar_plot, "value", "price")

[外鏈圖片轉存失敗,源站可能有防盜鏈機制,建議將圖片保存下來直接上傳(img-4G4l2X05-1584885647217)(output_79_0.png)]

##  5) 類別特徵的每個類別頻數可視化(count_plot)
def count_plot(x,  **kwargs):
    sns.countplot(x=x)
    x=plt.xticks(rotation=90)

f = pd.melt(Train_data,  value_vars=categorical_features)
g = sns.FacetGrid(f, col="variable",  col_wrap=2, sharex=False, sharey=False, size=5)
g = g.map(count_plot, "value")

[外鏈圖片轉存失敗,源站可能有防盜鏈機制,建議將圖片保存下來直接上傳(img-M4DZ4jf8-1584885647217)(output_80_0.png)]

用pandas_profiling生成數據報告

用pandas_profiling生成一個較爲全面的可視化和數據報告(較爲簡單、方便) 最終打開html文件即可

!pip install pandas_profiling
import pandas_profiling
Collecting pandas_profiling
[?25l  Downloading https://files.pythonhosted.org/packages/e8/b0/bd5e3aaf37302fbe581b6947dc5ec1cda02a0ffe50fc823123def73e4d7a/pandas-profiling-2.5.0.tar.gz (192kB)
[K     |████████████████████████████████| 194kB 498kB/s eta 0:00:01
[?25hRequirement already satisfied: numpy>=1.16.0 in /home/ach/anaconda3/lib/python3.7/site-packages (from pandas_profiling) (1.17.2)
Collecting scipy>=1.4.1 (from pandas_profiling)
[?25l  Downloading https://files.pythonhosted.org/packages/dd/82/c1fe128f3526b128cfd185580ba40d01371c5d299fcf7f77968e22dfcc2e/scipy-1.4.1-cp37-cp37m-manylinux1_x86_64.whl (26.1MB)
[K     |████████████████████████████████| 26.1MB 9.8MB/s eta 0:00:011    |████████████                    | 9.8MB 12.8MB/s eta 0:00:02     |█████████████████████▎          | 17.3MB 10.2MB/s eta 0:00:01
[?25hCollecting pandas==0.25.3 (from pandas_profiling)
[?25l  Downloading https://files.pythonhosted.org/packages/63/e0/a1b39cdcb2c391f087a1538bc8a6d62a82d0439693192aef541d7b123769/pandas-0.25.3-cp37-cp37m-manylinux1_x86_64.whl (10.4MB)
[K     |████████████████████████████████| 10.4MB 11.2MB/s eta 0:00:01
[?25hRequirement already satisfied: matplotlib>=3.0.3 in /home/ach/anaconda3/lib/python3.7/site-packages (from pandas_profiling) (3.1.1)
Collecting confuse==1.0.0 (from pandas_profiling)
  Downloading https://files.pythonhosted.org/packages/4c/6f/90e860cba937c174d8b3775729ccc6377eb91f52ad4eeb008e7252a3646d/confuse-1.0.0.tar.gz
Collecting jinja2==2.11.1 (from pandas_profiling)
[?25l  Downloading https://files.pythonhosted.org/packages/27/24/4f35961e5c669e96f6559760042a55b9bcfcdb82b9bdb3c8753dbe042e35/Jinja2-2.11.1-py2.py3-none-any.whl (126kB)
[K     |████████████████████████████████| 133kB 12.2MB/s eta 0:00:01
[?25hCollecting visions==0.2.2 (from pandas_profiling)
  Downloading https://files.pythonhosted.org/packages/07/4a/ab37f8bafda516b66c4f475b221a6c170097c0db203750a4aafb01023339/visions-0.2.2.tar.gz
Collecting htmlmin==0.1.12 (from pandas_profiling)
  Downloading https://files.pythonhosted.org/packages/b3/e7/fcd59e12169de19f0131ff2812077f964c6b960e7c09804d30a7bf2ab461/htmlmin-0.1.12.tar.gz
Requirement already satisfied: missingno==0.4.2 in /home/ach/anaconda3/lib/python3.7/site-packages (from pandas_profiling) (0.4.2)
Collecting phik==0.9.9 (from pandas_profiling)
[?25l  Downloading https://files.pythonhosted.org/packages/03/cf/b8cef2778104dc5d319f36dd836efaceb07a037cbf63f27c966b5a193ce9/phik-0.9.9-py3-none-any.whl (607kB)
[K     |████████████████████████████████| 614kB 11.4MB/s eta 0:00:01
[?25hCollecting astropy>=3.2.3 (from pandas_profiling)
[?25l  Downloading https://files.pythonhosted.org/packages/d5/50/5195c71d9aed4b5673a820724dada56e21f65f717c68a0e29183b4e12375/astropy-4.0-cp37-cp37m-manylinux1_x86_64.whl (6.5MB)
[K     |████████████████████████████████| 6.5MB 2.2MB/s eta 0:00:011
[?25hCollecting tangled-up-in-unicode==0.0.3 (from pandas_profiling)
[?25l  Downloading https://files.pythonhosted.org/packages/43/fc/e3c970c5007b405827a4623e70fc4eb966ee49bc1edbd56c33e85e1c6534/tangled_up_in_unicode-0.0.3.tar.gz (1.5MB)
[K     |████████████████████████████████| 1.5MB 8.0MB/s eta 0:00:01
[?25hCollecting tqdm==4.42.0 (from pandas_profiling)
[?25l  Downloading https://files.pythonhosted.org/packages/cc/2e/4307206db63f05ed37e21d4c0d843d0fbcacd62479f8ce99ba0f2c0875e0/tqdm-4.42.0-py2.py3-none-any.whl (59kB)
[K     |████████████████████████████████| 61kB 5.8MB/s eta 0:00:01
[?25hCollecting kaggle==1.5.6 (from pandas_profiling)
[?25l  Downloading https://files.pythonhosted.org/packages/62/ab/bb20f9b9e24f9a6250f95a432f8d9a7d745f8d24039d7a5a6eaadb7783ba/kaggle-1.5.6.tar.gz (58kB)
[K     |████████████████████████████████| 61kB 5.8MB/s  eta 0:00:01
[?25hRequirement already satisfied: ipywidgets==7.5.1 in /home/ach/anaconda3/lib/python3.7/site-packages (from pandas_profiling) (7.5.1)
Requirement already satisfied: requests==2.22.0 in /home/ach/anaconda3/lib/python3.7/site-packages (from pandas_profiling) (2.22.0)
Requirement already satisfied: python-dateutil>=2.6.1 in /home/ach/anaconda3/lib/python3.7/site-packages (from pandas==0.25.3->pandas_profiling) (2.8.0)
Requirement already satisfied: pytz>=2017.2 in /home/ach/anaconda3/lib/python3.7/site-packages (from pandas==0.25.3->pandas_profiling) (2019.3)
Requirement already satisfied: cycler>=0.10 in /home/ach/anaconda3/lib/python3.7/site-packages (from matplotlib>=3.0.3->pandas_profiling) (0.10.0)
Requirement already satisfied: kiwisolver>=1.0.1 in /home/ach/anaconda3/lib/python3.7/site-packages (from matplotlib>=3.0.3->pandas_profiling) (1.1.0)
Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /home/ach/anaconda3/lib/python3.7/site-packages (from matplotlib>=3.0.3->pandas_profiling) (2.4.2)
Requirement already satisfied: pyyaml in /home/ach/anaconda3/lib/python3.7/site-packages (from confuse==1.0.0->pandas_profiling) (5.1.2)
Requirement already satisfied: MarkupSafe>=0.23 in /home/ach/anaconda3/lib/python3.7/site-packages (from jinja2==2.11.1->pandas_profiling) (1.1.1)
Requirement already satisfied: networkx in /home/ach/anaconda3/lib/python3.7/site-packages (from visions==0.2.2->pandas_profiling) (2.4)
Collecting attr (from visions==0.2.2->pandas_profiling)
  Downloading https://files.pythonhosted.org/packages/de/be/ddc7f84d4e087144472a38a373d3e319f51a6faf6e5fc1ae897173675f21/attr-0.3.1.tar.gz
Requirement already satisfied: seaborn in /home/ach/anaconda3/lib/python3.7/site-packages (from missingno==0.4.2->pandas_profiling) (0.9.0)
Requirement already satisfied: pytest>=4.0.2 in /home/ach/anaconda3/lib/python3.7/site-packages (from phik==0.9.9->pandas_profiling) (5.2.1)
Requirement already satisfied: jupyter-client>=5.2.3 in /home/ach/anaconda3/lib/python3.7/site-packages (from phik==0.9.9->pandas_profiling) (5.3.3)
Collecting pytest-pylint>=0.13.0 (from phik==0.9.9->pandas_profiling)
  Downloading https://files.pythonhosted.org/packages/31/ef/e848f832a596a8a40b32d8aa169788b4df167c2d6a5960c01e83a30ebaa7/pytest_pylint-0.15.1-py3-none-any.whl
Requirement already satisfied: numba>=0.38.1 in /home/ach/anaconda3/lib/python3.7/site-packages (from phik==0.9.9->pandas_profiling) (0.45.1)
Requirement already satisfied: nbconvert>=5.3.1 in /home/ach/anaconda3/lib/python3.7/site-packages (from phik==0.9.9->pandas_profiling) (5.6.0)
Collecting joblib>=0.14.1 (from phik==0.9.9->pandas_profiling)
[?25l  Downloading https://files.pythonhosted.org/packages/28/5c/cf6a2b65a321c4a209efcdf64c2689efae2cb62661f8f6f4bb28547cf1bf/joblib-0.14.1-py2.py3-none-any.whl (294kB)
[K     |████████████████████████████████| 296kB 13.4MB/s eta 0:00:01
[?25hRequirement already satisfied: urllib3<1.25,>=1.21.1 in /home/ach/anaconda3/lib/python3.7/site-packages (from kaggle==1.5.6->pandas_profiling) (1.24.2)
Requirement already satisfied: six>=1.10 in /home/ach/anaconda3/lib/python3.7/site-packages (from kaggle==1.5.6->pandas_profiling) (1.12.0)
Requirement already satisfied: certifi in /home/ach/anaconda3/lib/python3.7/site-packages (from kaggle==1.5.6->pandas_profiling) (2019.11.28)
Collecting python-slugify (from kaggle==1.5.6->pandas_profiling)
  Downloading https://files.pythonhosted.org/packages/92/5f/7b84a0bba8a0fdd50c046f8b57dcf179dc16237ad33446079b7c484de04c/python-slugify-4.0.0.tar.gz
Requirement already satisfied: nbformat>=4.2.0 in /home/ach/anaconda3/lib/python3.7/site-packages (from ipywidgets==7.5.1->pandas_profiling) (4.4.0)
Requirement already satisfied: ipykernel>=4.5.1 in /home/ach/anaconda3/lib/python3.7/site-packages (from ipywidgets==7.5.1->pandas_profiling) (5.1.2)
Requirement already satisfied: ipython>=4.0.0; python_version >= "3.3" in /home/ach/anaconda3/lib/python3.7/site-packages (from ipywidgets==7.5.1->pandas_profiling) (7.8.0)
Requirement already satisfied: widgetsnbextension~=3.5.0 in /home/ach/anaconda3/lib/python3.7/site-packages (from ipywidgets==7.5.1->pandas_profiling) (3.5.1)
Requirement already satisfied: traitlets>=4.3.1 in /home/ach/anaconda3/lib/python3.7/site-packages (from ipywidgets==7.5.1->pandas_profiling) (4.3.3)
Requirement already satisfied: idna<2.9,>=2.5 in /home/ach/anaconda3/lib/python3.7/site-packages (from requests==2.22.0->pandas_profiling) (2.8)
Requirement already satisfied: chardet<3.1.0,>=3.0.2 in /home/ach/anaconda3/lib/python3.7/site-packages (from requests==2.22.0->pandas_profiling) (3.0.4)
Requirement already satisfied: setuptools in /home/ach/anaconda3/lib/python3.7/site-packages (from kiwisolver>=1.0.1->matplotlib>=3.0.3->pandas_profiling) (41.4.0)
Requirement already satisfied: decorator>=4.3.0 in /home/ach/anaconda3/lib/python3.7/site-packages (from networkx->visions==0.2.2->pandas_profiling) (4.4.0)
Requirement already satisfied: py>=1.5.0 in /home/ach/anaconda3/lib/python3.7/site-packages (from pytest>=4.0.2->phik==0.9.9->pandas_profiling) (1.8.0)
Requirement already satisfied: packaging in /home/ach/anaconda3/lib/python3.7/site-packages (from pytest>=4.0.2->phik==0.9.9->pandas_profiling) (19.2)
Requirement already satisfied: attrs>=17.4.0 in /home/ach/anaconda3/lib/python3.7/site-packages (from pytest>=4.0.2->phik==0.9.9->pandas_profiling) (19.2.0)
Requirement already satisfied: more-itertools>=4.0.0 in /home/ach/anaconda3/lib/python3.7/site-packages (from pytest>=4.0.2->phik==0.9.9->pandas_profiling) (7.2.0)
Requirement already satisfied: atomicwrites>=1.0 in /home/ach/anaconda3/lib/python3.7/site-packages (from pytest>=4.0.2->phik==0.9.9->pandas_profiling) (1.3.0)
Requirement already satisfied: pluggy<1.0,>=0.12 in /home/ach/anaconda3/lib/python3.7/site-packages (from pytest>=4.0.2->phik==0.9.9->pandas_profiling) (0.13.0)
Requirement already satisfied: wcwidth in /home/ach/anaconda3/lib/python3.7/site-packages (from pytest>=4.0.2->phik==0.9.9->pandas_profiling) (0.1.7)
Requirement already satisfied: importlib-metadata>=0.12 in /home/ach/anaconda3/lib/python3.7/site-packages (from pytest>=4.0.2->phik==0.9.9->pandas_profiling) (0.23)
Requirement already satisfied: pyzmq>=13 in /home/ach/anaconda3/lib/python3.7/site-packages (from jupyter-client>=5.2.3->phik==0.9.9->pandas_profiling) (18.1.0)
Requirement already satisfied: jupyter-core in /home/ach/anaconda3/lib/python3.7/site-packages (from jupyter-client>=5.2.3->phik==0.9.9->pandas_profiling) (4.5.0)
Requirement already satisfied: tornado>=4.1 in /home/ach/anaconda3/lib/python3.7/site-packages (from jupyter-client>=5.2.3->phik==0.9.9->pandas_profiling) (6.0.3)
Requirement already satisfied: pylint>=2.0.0 in /home/ach/anaconda3/lib/python3.7/site-packages (from pytest-pylint>=0.13.0->phik==0.9.9->pandas_profiling) (2.4.2)
Requirement already satisfied: llvmlite>=0.29.0dev0 in /home/ach/anaconda3/lib/python3.7/site-packages (from numba>=0.38.1->phik==0.9.9->pandas_profiling) (0.29.0)
Requirement already satisfied: pandocfilters>=1.4.1 in /home/ach/anaconda3/lib/python3.7/site-packages (from nbconvert>=5.3.1->phik==0.9.9->pandas_profiling) (1.4.2)
Requirement already satisfied: bleach in /home/ach/anaconda3/lib/python3.7/site-packages (from nbconvert>=5.3.1->phik==0.9.9->pandas_profiling) (3.1.0)
Requirement already satisfied: entrypoints>=0.2.2 in /home/ach/anaconda3/lib/python3.7/site-packages (from nbconvert>=5.3.1->phik==0.9.9->pandas_profiling) (0.3)
Requirement already satisfied: pygments in /home/ach/anaconda3/lib/python3.7/site-packages (from nbconvert>=5.3.1->phik==0.9.9->pandas_profiling) (2.4.2)
Requirement already satisfied: defusedxml in /home/ach/anaconda3/lib/python3.7/site-packages (from nbconvert>=5.3.1->phik==0.9.9->pandas_profiling) (0.6.0)
Requirement already satisfied: testpath in /home/ach/anaconda3/lib/python3.7/site-packages (from nbconvert>=5.3.1->phik==0.9.9->pandas_profiling) (0.4.2)
Requirement already satisfied: mistune<2,>=0.8.1 in /home/ach/anaconda3/lib/python3.7/site-packages (from nbconvert>=5.3.1->phik==0.9.9->pandas_profiling) (0.8.4)
Collecting text-unidecode>=1.3 (from python-slugify->kaggle==1.5.6->pandas_profiling)
[?25l  Downloading https://files.pythonhosted.org/packages/a6/a5/c0b6468d3824fe3fde30dbb5e1f687b291608f9473681bbf7dabbf5a87d7/text_unidecode-1.3-py2.py3-none-any.whl (78kB)
[K     |████████████████████████████████| 81kB 7.7MB/s  eta 0:00:01
[?25hRequirement already satisfied: jsonschema!=2.5.0,>=2.4 in /home/ach/anaconda3/lib/python3.7/site-packages (from nbformat>=4.2.0->ipywidgets==7.5.1->pandas_profiling) (3.0.2)
Requirement already satisfied: ipython-genutils in /home/ach/anaconda3/lib/python3.7/site-packages (from nbformat>=4.2.0->ipywidgets==7.5.1->pandas_profiling) (0.2.0)
Requirement already satisfied: backcall in /home/ach/anaconda3/lib/python3.7/site-packages (from ipython>=4.0.0; python_version >= "3.3"->ipywidgets==7.5.1->pandas_profiling) (0.1.0)
Requirement already satisfied: pexpect; sys_platform != "win32" in /home/ach/anaconda3/lib/python3.7/site-packages (from ipython>=4.0.0; python_version >= "3.3"->ipywidgets==7.5.1->pandas_profiling) (4.7.0)
Requirement already satisfied: jedi>=0.10 in /home/ach/anaconda3/lib/python3.7/site-packages (from ipython>=4.0.0; python_version >= "3.3"->ipywidgets==7.5.1->pandas_profiling) (0.15.1)
Requirement already satisfied: pickleshare in /home/ach/anaconda3/lib/python3.7/site-packages (from ipython>=4.0.0; python_version >= "3.3"->ipywidgets==7.5.1->pandas_profiling) (0.7.5)
Requirement already satisfied: prompt-toolkit<2.1.0,>=2.0.0 in /home/ach/anaconda3/lib/python3.7/site-packages (from ipython>=4.0.0; python_version >= "3.3"->ipywidgets==7.5.1->pandas_profiling) (2.0.10)
Requirement already satisfied: notebook>=4.4.1 in /home/ach/anaconda3/lib/python3.7/site-packages (from widgetsnbextension~=3.5.0->ipywidgets==7.5.1->pandas_profiling) (6.0.1)
Requirement already satisfied: zipp>=0.5 in /home/ach/anaconda3/lib/python3.7/site-packages (from importlib-metadata>=0.12->pytest>=4.0.2->phik==0.9.9->pandas_profiling) (0.6.0)
Requirement already satisfied: astroid<2.4,>=2.3.0 in /home/ach/anaconda3/lib/python3.7/site-packages (from pylint>=2.0.0->pytest-pylint>=0.13.0->phik==0.9.9->pandas_profiling) (2.3.1)
Requirement already satisfied: isort<5,>=4.2.5 in /home/ach/anaconda3/lib/python3.7/site-packages (from pylint>=2.0.0->pytest-pylint>=0.13.0->phik==0.9.9->pandas_profiling) (4.3.21)
Requirement already satisfied: mccabe<0.7,>=0.6 in /home/ach/anaconda3/lib/python3.7/site-packages (from pylint>=2.0.0->pytest-pylint>=0.13.0->phik==0.9.9->pandas_profiling) (0.6.1)
Requirement already satisfied: webencodings in /home/ach/anaconda3/lib/python3.7/site-packages (from bleach->nbconvert>=5.3.1->phik==0.9.9->pandas_profiling) (0.5.1)
Requirement already satisfied: pyrsistent>=0.14.0 in /home/ach/anaconda3/lib/python3.7/site-packages (from jsonschema!=2.5.0,>=2.4->nbformat>=4.2.0->ipywidgets==7.5.1->pandas_profiling) (0.15.4)
Requirement already satisfied: ptyprocess>=0.5 in /home/ach/anaconda3/lib/python3.7/site-packages (from pexpect; sys_platform != "win32"->ipython>=4.0.0; python_version >= "3.3"->ipywidgets==7.5.1->pandas_profiling) (0.6.0)
Requirement already satisfied: parso>=0.5.0 in /home/ach/anaconda3/lib/python3.7/site-packages (from jedi>=0.10->ipython>=4.0.0; python_version >= "3.3"->ipywidgets==7.5.1->pandas_profiling) (0.5.1)
Requirement already satisfied: Send2Trash in /home/ach/anaconda3/lib/python3.7/site-packages (from notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets==7.5.1->pandas_profiling) (1.5.0)
Requirement already satisfied: prometheus-client in /home/ach/anaconda3/lib/python3.7/site-packages (from notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets==7.5.1->pandas_profiling) (0.7.1)
Requirement already satisfied: terminado>=0.8.1 in /home/ach/anaconda3/lib/python3.7/site-packages (from notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets==7.5.1->pandas_profiling) (0.8.2)
Requirement already satisfied: wrapt==1.11.* in /home/ach/anaconda3/lib/python3.7/site-packages (from astroid<2.4,>=2.3.0->pylint>=2.0.0->pytest-pylint>=0.13.0->phik==0.9.9->pandas_profiling) (1.11.2)
Requirement already satisfied: lazy-object-proxy==1.4.* in /home/ach/anaconda3/lib/python3.7/site-packages (from astroid<2.4,>=2.3.0->pylint>=2.0.0->pytest-pylint>=0.13.0->phik==0.9.9->pandas_profiling) (1.4.2)
Collecting typed-ast<1.5,>=1.4.0; implementation_name == "cpython" and python_version < "3.8" (from astroid<2.4,>=2.3.0->pylint>=2.0.0->pytest-pylint>=0.13.0->phik==0.9.9->pandas_profiling)
[?25l  Downloading https://files.pythonhosted.org/packages/5d/10/0c1e8aa723a2b0c4032e048d8e511df82c8a1262f0e1df5e4c54eb2613e9/typed_ast-1.4.1-cp37-cp37m-manylinux1_x86_64.whl (737kB)
[K     |████████████████████████████████| 747kB 10.8MB/s eta 0:00:01
[?25hBuilding wheels for collected packages: pandas-profiling, confuse, visions, htmlmin, tangled-up-in-unicode, kaggle, attr, python-slugify
  Building wheel for pandas-profiling (setup.py) ... [?25ldone
[?25h  Created wheel for pandas-profiling: filename=pandas_profiling-2.5.0-py2.py3-none-any.whl size=241328 sha256=81645786541ffd480165a08412ae9302597a77a0b75080c2a306a4b9b5cf3ff0
  Stored in directory: /home/ach/.cache/pip/wheels/9b/c9/f1/4a2f30c760e017f3e2f46be999c4597a93d126ef5ea38e276f
  Building wheel for confuse (setup.py) ... [?25ldone
[?25h  Created wheel for confuse: filename=confuse-1.0.0-cp37-none-any.whl size=17486 sha256=e026affd3264b9f5ec11bce170d12b9b2e7d35564dad4957966a484c2ee658c8
  Stored in directory: /home/ach/.cache/pip/wheels/b0/b2/96/2074eee7dbf7b7df69d004c9b6ac4e32dad04fb7666cf943bd
  Building wheel for visions (setup.py) ... [?25ldone
[?25h  Created wheel for visions: filename=visions-0.2.2-cp37-none-any.whl size=53059 sha256=91b20c5dee9e8de062c249199d4ae8333bfc52bb0ac285b077cf2b579a4dbdc1
  Stored in directory: /home/ach/.cache/pip/wheels/53/87/68/294a9e88d82e395b38571df18f7cb71e9ab51cedae77dd6f31
  Building wheel for htmlmin (setup.py) ... [?25ldone
[?25h  Created wheel for htmlmin: filename=htmlmin-0.1.12-cp37-none-any.whl size=27086 sha256=4f6462cc3df69d498e9cc4e82a6b6f95ce4260c877fa399c95fe5e58aac538dc
  Stored in directory: /home/ach/.cache/pip/wheels/43/07/ac/7c5a9d708d65247ac1f94066cf1db075540b85716c30255459
  Building wheel for tangled-up-in-unicode (setup.py) ... [?25ldone
[?25h  Created wheel for tangled-up-in-unicode: filename=tangled_up_in_unicode-0.0.3-cp37-none-any.whl size=1554154 sha256=488f9b182f99de184f24acbede23c3815895eb9bf8ef82c9ce0bf54244dd88f3
  Stored in directory: /home/ach/.cache/pip/wheels/c4/57/cc/5f58206efb00418d4dcae8d08a3cb40627778ea29622f664c6
  Building wheel for kaggle (setup.py) ... [?25ldone
[?25h  Created wheel for kaggle: filename=kaggle-1.5.6-cp37-none-any.whl size=72859 sha256=76f15a9764ed594edac2aece2fe5343cc97846e1b52f320ecac22264aaeecb90
  Stored in directory: /home/ach/.cache/pip/wheels/57/4e/e8/bb28d035162fb8f17f8ca5d42c3230e284c6aa565b42b72674
  Building wheel for attr (setup.py) ... [?25ldone
[?25h  Created wheel for attr: filename=attr-0.3.1-cp37-none-any.whl size=2459 sha256=aacfe672fb79a445977dc333fc8c8e87c0c512178596bc7c1c7edb7e1a3f8287
  Stored in directory: /home/ach/.cache/pip/wheels/f0/96/9b/1f8892a707d17095b5a6eab0275da9d39e68e03a26aee2e726
  Building wheel for python-slugify (setup.py) ... [?25ldone
[?25h  Created wheel for python-slugify: filename=python_slugify-4.0.0-py2.py3-none-any.whl size=5487 sha256=f2b8d0ae5d60817e937bf9a32908a299373aefcd2f80e18492dd929c1cd854fd
  Stored in directory: /home/ach/.cache/pip/wheels/11/94/81/312969455540cb0e6a773e5d68a73c14128bfdfd4a7969bb4f
Successfully built pandas-profiling confuse visions htmlmin tangled-up-in-unicode kaggle attr python-slugify
[31mERROR: hyperopt 0.2.3 has requirement networkx==2.2, but you'll have networkx 2.4 which is incompatible.[0m
Installing collected packages: scipy, pandas, confuse, jinja2, tangled-up-in-unicode, attr, visions, htmlmin, pytest-pylint, joblib, phik, astropy, tqdm, text-unidecode, python-slugify, kaggle, pandas-profiling, typed-ast
  Found existing installation: scipy 1.3.1
    Uninstalling scipy-1.3.1:
      Successfully uninstalled scipy-1.3.1
  Found existing installation: pandas 0.25.1
    Uninstalling pandas-0.25.1:
      Successfully uninstalled pandas-0.25.1
  Found existing installation: Jinja2 2.10.3
    Uninstalling Jinja2-2.10.3:
      Successfully uninstalled Jinja2-2.10.3
  Found existing installation: joblib 0.13.2
    Uninstalling joblib-0.13.2:
      Successfully uninstalled joblib-0.13.2
  Found existing installation: astropy 3.2.2
    Uninstalling astropy-3.2.2:
      Successfully uninstalled astropy-3.2.2
  Found existing installation: tqdm 4.36.1
    Uninstalling tqdm-4.36.1:
      Successfully uninstalled tqdm-4.36.1
Successfully installed astropy-4.0 attr-0.3.1 confuse-1.0.0 htmlmin-0.1.12 jinja2-2.11.1 joblib-0.14.1 kaggle-1.5.6 pandas-0.25.3 pandas-profiling-2.5.0 phik-0.9.9 pytest-pylint-0.15.1 python-slugify-4.0.0 scipy-1.4.1 tangled-up-in-unicode-0.0.3 text-unidecode-1.3 tqdm-4.42.0 typed-ast-1.4.1 visions-0.2.2
pfr = pandas_profiling.ProfileReport(Train_data)
pfr.to_file("./example.html")
HBox(children=(FloatProgress(value=0.0, description='variables', max=29.0, style=ProgressStyle(descrip
所給出的EDA步驟爲廣爲普遍的步驟,在實際的不管是工程還是比賽過程中,這只是最開始的一步,也是最基本的一步。

接下來一般要結合模型的效果以及特徵工程等來分析數據的實際建模情況,根據自己的一些理解,查閱文獻,對實際問題做出判斷和深入的理解。

最後不斷進行EDA與數據處理和挖掘,來到達更好的數據結構和分佈以及較爲強勢相關的特徵

---
數據探索在機器學習中我們一般稱爲EDA(Exploratory Data Analysis):

> 是指對已有的數據(特別是調查或觀察得來的原始數據)在儘量少的先驗假定下進行探索,通過作圖、製表、方程擬合、計算特徵量等手段探索數據的結構和規律的一種數據分析方法。

數據探索有利於我們發現數據的一些特性,數據之間的關聯性,對於後續的特徵構建是很有幫助的。

1. 對於數據的初步分析(直接查看數據,或.sum(), .mean().descirbe()等統計函數)可以從:樣本數量,訓練集數量,是否有時間特徵,是否是時許問題,特徵所表示的含義(非匿名特徵),特徵類型(字符類似,intfloat,time),特徵的缺失情況(注意缺失的在數據中的表現形式,有些是空的有些是”NAN”符號等),特徵的均值方差情況。

2. 分析記錄某些特徵值缺失佔比30%以上樣本的缺失處理,有助於後續的模型驗證和調節,分析特徵應該是填充(填充方式是什麼,均值填充,0填充,衆數填充等),還是捨去,還是先做樣本分類用不同的特徵模型去預測。

3. 對於異常值做專門的分析,分析特徵異常的label是否爲異常值(或者偏離均值較遠或者事特殊符號),異常值是否應該剔除,還是用正常值填充,是記錄異常,還是機器本身異常等。

4. 對於Label做專門的分析,分析標籤的分佈情況等。

5. 進步分析可以通過對特徵作圖,特徵和label聯合做圖(統計圖,離散圖),直觀瞭解特徵的分佈情況,通過這一步也可以發現數據之中的一些異常值等,通過箱型圖分析一些特徵值的偏離情況,對於特徵和特徵聯合作圖,對於特徵和label聯合作圖,分析其中的一些關聯性。

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章