Wu deeplearning.ai C1W2 assignment2_2

Logistic Regression with a Neural Network mindset

Welcome to your first (required) programming assignment! You will build a logistic regression classifier to recognize cats. This assignment will step you through how to do this with a Neural Network mindset, and so will also hone your intuitions about deep learning.

Instructions:

  • Do not use loops (for/while) in your code, unless the instructions explicitly ask you to do so.

You will learn to:

  • Build the general architecture of a learning algorithm, including:
    • Initializing parameters
    • Calculating the cost function and its gradient
    • Using an optimization algorithm (gradient descent) 
  • Gather all three functions above into a main model function, in the right order.

這邊的主要任務就是構建一個logistics迴歸的二分分類器去分類貓,主要分爲如下幾步:

1)導入所需要的package,對data進行preprocessing

2)編寫必要的Basic function,比如sigmoid、initialize_with_zeros等等

3)最後構建model,測試

下面詳細展開:

1.數據的導入以及預處理

import numpy as np
import matplotlib.pyplot as plt
import h5py
import scipy
from PIL import Image
from scipy import ndimage
from lr_utils import load_dataset

# Loading the data (cat/non-cat)
train_set_x_orig, train_set_y, test_set_x_orig, test_set_y, classes = load_dataset()

#label_1
m_train = train_set_x_orig.shape[0]
m_test = test_set_x_orig.shape[0]
num_px = train_set_x_orig.shape[1]

#label_2
train_set_x_flatten = train_set_x_orig.reshape(train_set_x_orig.shape[0],-1).T
test_set_x_flatten = test_set_x_orig.reshape(test_set_x_orig.shape[0],-1).T
train_set_x = train_set_x_flatten/255.
test_set_x = test_set_x_flatten/255.

label_1處可以對訓練集和測試集的大小有具體印象,文中是這樣闡述的:Remember that train_set_x_orig is a numpy-array of shape (m_train, num_px, num_px, 3). For instance, you can access m_train by writing train_set_x_orig.shape[0].

label_2處就是數據的預處理過程,先試把原始的數據集(m_train,num_px,num_px,3)reshape爲(num_px*num_px*3,m_train),規範數據表示(矩陣的形式)方便後面的計算,原文也給了轉變的具體方式,如下:

Reshape the training and test data sets so that images of size (num_px, num_px, 3) are flattened into single vectors of shape (num_px ∗ num_px ∗ 3, 1).A trick when you want to flatten a matrix X of shape (a,b,c,d) to a matrix X_flatten of shape (b∗c∗d, a) is to use:

X_flatten = X.reshape(X.shape[0], -1).T

2.基礎函數的編寫

# GRADED FUNCTION: sigmoid
def sigmoid(z):
    s = 1/(1+np.exp(-z))
    return s


# GRADED FUNCTION: initialize_with_zeros
def initialize_with_zeros(dim):
    w = np.zeros((dim,1))
    b = 0
    assert(w.shape == (dim, 1))
    assert(isinstance(b, float) or isinstance(b, int))
    return w, b


# GRADED FUNCTION: propagate
def propagate(w, b, X, Y):
    m = X.shape[1]
    A = sigmoid(np.dot(w.T,X)+b)    # compute activation
    cost = -np.sum(Y*np.log(A)+(1-Y)*np.log(1-A))/m  # compute cost
    dw = np.dot(X,(A-Y).T)/m
    db = np.sum(A-Y)/m
    assert(dw.shape == w.shape)
    assert(db.dtype == float)
    cost = np.squeeze(cost)
    assert(cost.shape == ())
    grads = {"dw": dw,
             "db": db}
    return grads, cost


# GRADED FUNCTION: optimize
def optimize(w, b, X, Y, num_iterations, learning_rate, print_cost = False):
    costs = []
    for i in range(num_iterations):
              
        # Cost and gradient calculation (≈ 1-4 lines of code)
        grads,cost = propagate(w,b,X,Y)
        
        # Retrieve derivatives from grads
        dw = grads["dw"]
        db = grads["db"]
        
        # update rule (≈ 2 lines of code)
        w = w-learning_rate*dw
        b = b-learning_rate*db
        
        # Record the costs
        if i % 100 == 0:
            costs.append(cost)
        
        # Print the cost every 100 training examples
        if print_cost and i % 100 == 0:
            print ("Cost after iteration %i: %f" %(i, cost))
    
    params = {"w": w,
              "b": b}
    grads = {"dw": dw,
             "db": db}
    return params, grads, costs


# GRADED FUNCTION: predict
def predict(w, b, X):
    m = X.shape[1]
    Y_prediction = np.zeros((1,m))
    w = w.reshape(X.shape[0], 1) #保證dot運算不出錯
    
    # Compute vector "A" predicting the probabilities of a cat being present in the picture
    A = sigmoid(np.dot(w.T,X)+b)

    for i in range(A.shape[1]):
        
        # Convert probabilities A[0,i] to actual predictions p[0,i]
        if A[0][i]<=0.5:
            Y_prediction[0][i] = 0
        else:
            Y_prediction[0][i] = 1
    
    assert(Y_prediction.shape == (1, m))
    
    return Y_prediction

這邊需要說明的幾點是,在predict函數中,給出的w = w.reshape(X.shape[0],1),這邊很細節,時刻確保矩陣正確的維度是很重要的。這樣在下面的dot運算中,保證w.T與X的矩陣乘法運算滿足矩陣乘法規則,即爲([1,X.shape[0]]*[X.shape[0],X.shape[1]]=[1,X.shape[1]]),這樣我們就能很清楚的知道A就是1*m的矩陣,所以下面code時就可以確定寫A[0][i]

3.構建model,測試

# GRADED FUNCTION: model
def model(X_train, Y_train, X_test, Y_test, num_iterations = 2000, learning_rate = 0.5, print_cost = False):
    
    # initialize parameters with zeros (≈ 1 line of code)
    dim = X_train.shape[0]
    w,b = initialize_with_zeros(dim)
    # Gradient descent (≈ 1 line of code)
    params,grads,costs = optimize(w,b,X_train,Y_train,num_iterations,learning_rate,print_cost)
    # Retrieve parameters w and b from dictionary "parameters"
    w = params["w"]
    b = params["b"]
    # Predict test/train set examples (≈ 2 lines of code)
    Y_prediction_train = predict(w,b,X_train)
    Y_prediction_test = predict(w,b,X_test)

    # Print train/test Errors
    print("train accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_train - Y_train)) * 100))
    print("test accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_test - Y_test)) * 100))
    
    d = {"costs": costs,
         "Y_prediction_test": Y_prediction_test, 
         "Y_prediction_train" : Y_prediction_train, 
         "w" : w, 
         "b" : b,
         "learning_rate" : learning_rate,
         "num_iterations": num_iterations}
    
    return d

d = model(train_set_x, train_set_y, test_set_x, test_set_y, num_iterations = 2000, learning_rate = 0.01, print_cost = True)

這邊我注意了一下正確率的計算方式如下:

accurate=100*(1-\frac{1}{m}\sum_{i=0}^{m}\left | \hat{y}^{(i)}-y^{(i)} \right |)

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章