CArchive詳解(轉)

CArchive原理

posted on 2005年1月18日 21:39 由 devzhao

一.概述

CArchive使用了緩衝區,即一段內存空間作爲臨時數據存儲地,對CArchive的讀寫都先依次排列到此緩衝區,當緩衝區滿或用戶要求時,將此段整理後的數據讀寫到指定的存儲煤質。
當建立CArchive對象時,應指定其模式是用於緩衝區讀,還是用於緩衝區寫。
可以這樣理解,CArchive對象相當於鐵路的貨運練調度站,零散的貨物被收集,當總量到達火車運量的時候,由火車裝運走。
當接到火車的貨物時,則貨物由被分散到各自的貨主。與貨運不同的是,交貨、取貨是按時間循序執行的,而不是憑票據。因此必須保證送貨的和取貨的貨主按同樣的循序去存或取。
對於大型的貨物,則是拆散成火車單位,運走,取貨時,依次取各部分,組裝成原物。

 

二.內部數據
緩衝區指針 BYTE* m_lpBufStart,指向緩衝區,這個緩衝區有可能是底層CFile(如派生類CMemFile)對象提供的,但一般是CArchive自己建立的。
緩衝區尾部指針 BYTE* m_lpBufMax;
緩衝區當前位置指針 BYTE* m_lpBufCur;
初始化時,如果是讀模式,當前位置在尾部,如果是寫模式,當前位置在頭部:

m_lpBufCur = (IsLoading()) ? m_lpBufMax : m_lpBufStart;
三.基本數據讀寫

對於基本的數據類型,例如字節、雙字等,可以直接使用">>"、"<<"符號進行讀出、寫入。

//操作符定義捕:
  //插入操作
CArchive& operator<<(BYTE by);
CArchive& operator<<(WORD w);
CArchive& operator<<(LONG l);
CArchive& operator<<(DWORD dw);
CArchive& operator<<(float f);
CArchive& operator<<(double d);
CArchive& operator<<(int i);
CArchive& operator<<(short w);
CArchive& operator<<(char ch);
CArchive& operator<<(unsigned u);
//提取操作
CArchive& operator>>(BYTE& by);
CArchive& operator>>(WORD& w);
CArchive& operator>>(DWORD& dw);
CArchive& operator>>(LONG& l);
CArchive& operator>>(float& f);
CArchive& operator>>(double& d);
CArchive& operator>>(int& i);
CArchive& operator>>(short& w);
CArchive& operator>>(char& ch);
CArchive& operator>>(unsigned& u);
下面以雙字爲例,分析原碼

雙字的插入(寫)

CArchive& CArchive::operator<<(DWORD dw)
{  if (m_lpBufCur + sizeof(DWORD) > m_lpBufMax) //緩衝區空間不夠
  Flush();  //緩衝區內容提交到實際存儲煤質。
 if (!(m_nMode & bNoByteSwap))
  _AfxByteSwap(dw, m_lpBufCur);  //處理字節順序
 else
  *(DWORD*)m_lpBufCur = dw;      //添入緩衝區
 m_lpBufCur += sizeof(DWORD);     //移動當前指針
 return *this;
}
雙字的提取(讀)
CArchive& CArchive::operator>>(DWORD& dw)
{  if (m_lpBufCur + sizeof(DWORD) > m_lpBufMax) //緩衝區要讀完了
  FillBuffer(sizeof(DWORD) - (UINT)(m_lpBufMax - m_lpBufCur));  //重新讀入內容到緩衝區
 dw = *(DWORD*)m_lpBufCur;  //讀取雙字
 m_lpBufCur += sizeof(DWORD); //移動當前位置指針
 if (!(m_nMode & bNoByteSwap))
  _AfxByteSwap(dw, (BYTE*)&dw);  //處理字節順序
 return *this;
}
四.緩衝區的更新

以上操作中,當緩衝區將插入滿或緩衝區將提取空時,都將對緩衝區進行更新處理。

緩衝區將插入滿時調用Flush();
void CArchive::Flush()
{  ASSERT_VALID(m_pFile);
 ASSERT(m_bDirectBuffer || m_lpBufStart != NULL);
 ASSERT(m_bDirectBuffer || m_lpBufCur != NULL);
 ASSERT(m_lpBufStart == NULL ||
  AfxIsValidAddress(m_lpBufStart, m_lpBufMax - m_lpBufStart, IsStoring()));
 ASSERT(m_lpBufCur == NULL ||
  AfxIsValidAddress(m_lpBufCur, m_lpBufMax - m_lpBufCur, IsStoring()));
 if (IsLoading())
 {
  // unget the characters in the buffer, seek back unused amount
  if (m_lpBufMax != m_lpBufCur)
   m_pFile-> Seek(-(m_lpBufMax - m_lpBufCur), CFile::current);
  m_lpBufCur = m_lpBufMax;    // 指向尾
 }
 else   //寫模式
 {
  if (!m_bDirectBuffer)
  {
   // 內容寫入到文件
   if (m_lpBufCur != m_lpBufStart)
    m_pFile-> Write(m_lpBufStart, m_lpBufCur - m_lpBufStart);
  }
  else
  {
   //如果是直接針對內存區域的的(例如CMemFile中) (只需移動相關指針,指向新的一塊內存)
   if (m_lpBufCur != m_lpBufStart)
    m_pFile-> GetBufferPtr(CFile::bufferCommit, m_lpBufCur - m_lpBufStart);
   // get next buffer
   VERIFY(m_pFile-> GetBufferPtr(CFile::bufferWrite, m_nBufSize,
    (void**)&m_lpBufStart, (void**)&m_lpBufMax) == (UINT)m_nBufSize);
   ASSERT((UINT)m_nBufSize == (UINT)(m_lpBufMax - m_lpBufStart));
  }
  m_lpBufCur = m_lpBufStart; //指向緩衝區首
 }
}
緩衝區將提取空,會調用FillBuffer。 nBytesNeeded爲當前剩餘部分上尚有用的字節
void CArchive::FillBuffer(UINT nBytesNeeded)
{  ASSERT_VALID(m_pFile);
 ASSERT(IsLoading());
 ASSERT(m_bDirectBuffer || m_lpBufStart != NULL);
 ASSERT(m_bDirectBuffer || m_lpBufCur != NULL);
 ASSERT(nBytesNeeded > 0);
 ASSERT(nBytesNeeded <= (UINT)m_nBufSize);
 ASSERT(m_lpBufStart == NULL ||
  AfxIsValidAddress(m_lpBufStart, m_lpBufMax - m_lpBufStart, FALSE));
 ASSERT(m_lpBufCur == NULL ||
  AfxIsValidAddress(m_lpBufCur, m_lpBufMax - m_lpBufCur, FALSE));
 UINT nUnused = m_lpBufMax - m_lpBufCur;
 ULONG nTotalNeeded = ((ULONG)nBytesNeeded) + nUnused;
 // 從文件中讀取
 if (!m_bDirectBuffer)
 {
  ASSERT(m_lpBufCur != NULL);
  ASSERT(m_lpBufStart != NULL);
  ASSERT(m_lpBufMax != NULL);
  if (m_lpBufCur > m_lpBufStart)
  {
   //保留剩餘的尚未處理的部分,將它們移動到頭
   if ((int)nUnused > 0)
   {
    memmove(m_lpBufStart, m_lpBufCur, nUnused);
    m_lpBufCur = m_lpBufStart;
    m_lpBufMax = m_lpBufStart + nUnused;
   }
   // read to satisfy nBytesNeeded or nLeft if possible
   UINT nRead = nUnused;
   UINT nLeft = m_nBufSize-nUnused;
   UINT nBytes;
   BYTE* lpTemp = m_lpBufStart + nUnused;
   do
   {
    nBytes = m_pFile-> Read(lpTemp, nLeft);
    lpTemp = lpTemp + nBytes;
    nRead += nBytes;
    nLeft -= nBytes;
   }
   while (nBytes > 0 && nLeft > 0 && nRead < nBytesNeeded);
   m_lpBufCur = m_lpBufStart;
   m_lpBufMax = m_lpBufStart + nRead;
  }
 }
 else
 {
  // 如果是針對內存區域(CMemFile),移動相關指針,指向新的一塊內存
  if (nUnused != 0)
   m_pFile-> Seek(-(LONG)nUnused, CFile::current);
  UINT nActual = m_pFile-> GetBufferPtr(CFile::bufferRead, m_nBufSize,
   (void**)&m_lpBufStart, (void**)&m_lpBufMax);
  ASSERT(nActual == (UINT)(m_lpBufMax - m_lpBufStart));
  m_lpBufCur = m_lpBufStart;
 }
 // not enough data to fill request?
 if ((ULONG)(m_lpBufMax - m_lpBufCur) < nTotalNeeded)
  AfxThrowArchiveException(CArchiveException::endOfFile);
}
五.指定長度數據段落的讀寫

以下分析
UINT Read(void* lpBuf, UINT nMax); 讀取長度爲nMax的數據
void Write(const void* lpBuf, UINT nMax); 寫入指定長度nMax的數據
對於大段數據的讀寫,先使用當前緩衝區中的內容或空間讀取或寫入,若這些空間夠用了,則結束。
否則,從剩餘的數據中找出最大的緩衝區整數倍大小的一塊數據,直接讀寫到存儲煤質(不反覆使用緩衝區)。
剩餘的餘數部分,再使用緩衝區讀寫。
(說明:緩衝區讀寫的主要目的是將零散的數據以緩衝區大小爲尺度來處理。對於大型數據,其中間的部分,不是零散的數據,使用緩衝區已經沒有意思,故直接讀寫)

①讀取

UINT CArchive::Read(void* lpBuf, UINT nMax)
{  ASSERT_VALID(m_pFile);
 if (nMax == 0)
  return 0;
 UINT nMaxTemp = nMax;  //還需要讀入的長度,讀入一部分,就減相應數值,直到此數值變爲零
   //處理當前緩衝區中剩餘部分。
 //如果要求讀入字節小於緩衝區中剩餘部分,則第一部分爲要求讀入的字節數,
 //否則讀入全部剩餘部分 
 UINT nTemp = min(nMaxTemp, (UINT)(m_lpBufMax - m_lpBufCur));  
 memcpy(lpBuf, m_lpBufCur, nTemp);
 m_lpBufCur += nTemp;
 lpBuf = (BYTE*)lpBuf + nTemp; //移動讀出內容所在區域的指針
 nMaxTemp -= nTemp;
 //當前緩衝區中剩餘部分不夠要求讀入的長度。
 //還有字節需要讀,則需要根據需要執行若干次填充緩衝區,讀出,直到讀出指定字節。
 if (nMaxTemp != 0)  
 {
  //計算出去除尾數部分的字節大小(整數個緩衝區大小)
  //對於這些部分,字節從文件對象中讀出,放到輸出緩衝區
  nTemp = nMaxTemp - (nMaxTemp % m_nBufSize);  
  UINT nRead = 0;
  UINT nLeft = nTemp;
  UINT nBytes;
  do
  {
   nBytes = m_pFile-> Read(lpBuf, nLeft); //要求讀入此整數緩衝區部分大小
   lpBuf = (BYTE*)lpBuf + nBytes;
   nRead += nBytes;
   nLeft -= nBytes;
  }
  while ((nBytes > 0) && (nLeft > 0)); 知道讀入了預定大小,或到達文件尾
  nMaxTemp -= nRead;
  if (nRead == nTemp) //讀入的字節等於讀入的整數倍部分  該讀最後的餘數部分了
  {
   // 建立裝有此最後餘數部分的內容的CArchive的工作緩衝區。
   if (!m_bDirectBuffer)
   {
    UINT nLeft = max(nMaxTemp, (UINT)m_nBufSize);
    UINT nBytes;
    BYTE* lpTemp = m_lpBufStart;
    nRead = 0;
    do
    {
     nBytes = m_pFile-> Read(lpTemp, nLeft);  //從文件中讀入到CArchive緩衝區
     lpTemp = lpTemp + nBytes;
     nRead += nBytes;
     nLeft -= nBytes;
    }
    while ((nBytes > 0) && (nLeft > 0) && nRead < nMaxTemp);
    m_lpBufCur = m_lpBufStart;
    m_lpBufMax = m_lpBufStart + nRead;
   }
   else
   {
    nRead = m_pFile-> GetBufferPtr(CFile::bufferRead, m_nBufSize,
     (void**)&m_lpBufStart, (void**)&m_lpBufMax);
    ASSERT(nRead == (UINT)(m_lpBufMax - m_lpBufStart));
    m_lpBufCur = m_lpBufStart;
   }
   //讀出此剩餘部分到輸出
   nTemp = min(nMaxTemp, (UINT)(m_lpBufMax - m_lpBufCur));
   memcpy(lpBuf, m_lpBufCur, nTemp);
   m_lpBufCur += nTemp;
   nMaxTemp -= nTemp;
  }
  
 }
 return nMax - nMaxTemp;
}
②保存,寫入
void CArchive::Write(const void* lpBuf, UINT nMax)
{  if (nMax == 0)
  return;
   //讀入可能的部分到緩衝區當前的剩餘部分 
 UINT nTemp = min(nMax, (UINT)(m_lpBufMax - m_lpBufCur));
 memcpy(m_lpBufCur, lpBuf, nTemp);
 m_lpBufCur += nTemp;
 lpBuf = (BYTE*)lpBuf + nTemp;
 nMax -= nTemp;
 if (nMax > 0)  //還有未寫入的部分
 {
  Flush();    //將當前緩衝區寫入到存儲煤質
  //計算出整數倍緩衝區大小的字節數
  nTemp = nMax - (nMax % m_nBufSize);
  m_pFile-> Write(lpBuf, nTemp);  //直接寫到文件
  lpBuf = (BYTE*)lpBuf + nTemp;
  nMax -= nTemp;
  //剩餘部分添加到緩衝區
  if (m_bDirectBuffer)
  {
   // sync up direct mode buffer to new file position
   VERIFY(m_pFile-> GetBufferPtr(CFile::bufferWrite, m_nBufSize,
    (void**)&m_lpBufStart, (void**)&m_lpBufMax) == (UINT)m_nBufSize);
   ASSERT((UINT)m_nBufSize == (UINT)(m_lpBufMax - m_lpBufStart));
   m_lpBufCur = m_lpBufStart;
  }
  // copy remaining to active buffer
  ASSERT(nMax < (UINT)m_nBufSize);
  ASSERT(m_lpBufCur == m_lpBufStart);
  memcpy(m_lpBufCur, lpBuf, nMax);
  m_lpBufCur += nMax;
 }
}
六.字符串的讀寫

①CArchive提供的WriteString和ReadString


字符串寫
void CArchive::WriteString(LPCTSTR lpsz)
{  ASSERT(AfxIsValidString(lpsz));
 Write(lpsz, lstrlen(lpsz) * sizeof(TCHAR));  //調用Write,將字符串對應的一段數據寫入
}
字符串讀(讀取一行字符串)
LPTSTR CArchive::ReadString(LPTSTR lpsz, UINT nMax)
{  // if nMax is negative (such a large number doesn''t make sense given today''s
 // 2gb address space), then assume it to mean "keep the newline".
 int nStop = (int)nMax < 0 ? -(int)nMax : (int)nMax;
 ASSERT(AfxIsValidAddress(lpsz, (nStop+1) * sizeof(TCHAR)));
 _TUCHAR ch;
 int nRead = 0;
 TRY
 {
  while (nRead < nStop)
  {
   *this >> ch;  //讀出一個字節
   // stop and end-of-line (trailing ''/n'' is ignored)  遇換行—回車
   if (ch == ''/n'' || ch == ''/r'')
   {
    if (ch == ''/r'')
     *this >> ch;
    // store the newline when called with negative nMax
    if ((int)nMax != nStop)
     lpsz[nRead++] = ch;
    break;
   }
   lpsz[nRead++] = ch;
  }
 }
 CATCH(CArchiveException, e)
 {
  if (e-> m_cause == CArchiveException::endOfFile)
  {
   DELETE_EXCEPTION(e);
   if (nRead == 0)
    return NULL;
  }
  else
  {
   THROW_LAST();
  }
 }
 END_CATCH
 lpsz[nRead] = ''/0'';
 return lpsz;
}
ReadString到CString對象,可以多行字符
BOOL CArchive::ReadString(CString& rString)
{  rString = &afxChNil;    // empty string without deallocating
 const int nMaxSize = 128;
 LPTSTR lpsz = rString.GetBuffer(nMaxSize);
 LPTSTR lpszResult;
 int nLen;
 for (;;)
 {
  lpszResult = ReadString(lpsz, (UINT)-nMaxSize); // store the newline
  rString.ReleaseBuffer();
  // if string is read completely or EOF
  if (lpszResult == NULL ||
   (nLen = lstrlen(lpsz)) < nMaxSize ||
   lpsz[nLen-1] == ''/n'')
  {
   break;
  }
  nLen = rString.GetLength();
  lpsz = rString.GetBuffer(nMaxSize + nLen) + nLen;
 }
 // remove ''/n'' from end of string if present
 lpsz = rString.GetBuffer(0);
 nLen = rString.GetLength();
 if (nLen != 0 && lpsz[nLen-1] == ''/n'')
  rString.GetBufferSetLength(nLen-1);
 return lpszResult != NULL;
}
 
②使用CString對象的"<<"與">>"符讀寫字符串 

CString定義了輸入輸出符,可以象基本類型的數據一樣使用CArchive 的操作符定義

friend CArchive& AFXAPI operator<<(CArchive& ar, const CString& string);
friend CArchive& AFXAPI operator>>(CArchive& ar, CString& string);
// CString serialization code
// String format:
//      UNICODE strings are always prefixed by 0xff, 0xfffe
//      if < 0xff chars: len:BYTE, TCHAR chars
//      if >= 0xff characters: 0xff, len:WORD, TCHAR chars
//      if >= 0xfffe characters: 0xff, 0xffff, len:DWORD, TCHARs
CArchive& AFXAPI operator<<(CArchive& ar, const CString& string)
{  // special signature to recognize unicode strings
#ifdef _UNICODE
 ar << (BYTE)0xff;
 ar << (WORD)0xfffe;
#endif
 if (string.GetData()-> nDataLength < 255)
 {
  ar << (BYTE)string.GetData()-> nDataLength;
 }
 else if (string.GetData()-> nDataLength < 0xfffe)
 {
  ar << (BYTE)0xff;
  ar << (WORD)string.GetData()-> nDataLength;
 }
 else
 {
  ar << (BYTE)0xff;
  ar << (WORD)0xffff;
  ar << (DWORD)string.GetData()-> nDataLength;
 }
 ar.Write(string.m_pchData, string.GetData()-> nDataLength*sizeof(TCHAR));
 return ar;
}
// return string length or -1 if UNICODE string is found in the archive
AFX_STATIC UINT AFXAPI _AfxReadStringLength(CArchive& ar)
{  DWORD nNewLen;
 // attempt BYTE length first
 BYTE bLen;
 ar >> bLen;
 if (bLen < 0xff)
  return bLen;
 // attempt WORD length
 WORD wLen;
 ar >> wLen;
 if (wLen == 0xfffe)
 {
  // UNICODE string prefix (length will follow)
  return (UINT)-1;
 }
 else if (wLen == 0xffff)
 {
  // read DWORD of length
  ar >> nNewLen;
  return (UINT)nNewLen;
 }
 else
  return wLen;
}
CArchive& AFXAPI operator>>(CArchive& ar, CString& string)
{ #ifdef _UNICODE
 int nConvert = 1;   // if we get ANSI, convert
#else
 int nConvert = 0;   // if we get UNICODE, convert
#endif
 UINT nNewLen = _AfxReadStringLength(ar);
 if (nNewLen == (UINT)-1)
 {
  nConvert = 1 - nConvert;
  nNewLen = _AfxReadStringLength(ar);
  ASSERT(nNewLen != -1);
 }
 // set length of string to new length
 UINT nByteLen = nNewLen;
#ifdef _UNICODE
 string.GetBufferSetLength((int)nNewLen);
 nByteLen += nByteLen * (1 - nConvert);  // bytes to read
#else
 nByteLen += nByteLen * nConvert;    // bytes to read
 if (nNewLen == 0)
  string.GetBufferSetLength(0);
 else
  string.GetBufferSetLength((int)nByteLen+nConvert);
#endif
 // read in the characters
 if (nNewLen != 0)
 {
  ASSERT(nByteLen != 0);
  // read new data
  if (ar.Read(string.m_pchData, nByteLen) != nByteLen)
   AfxThrowArchiveException(CArchiveException::endOfFile);
  // convert the data if as necessary
  if (nConvert != 0)
  {
#ifdef _UNICODE
   CStringData* pOldData = string.GetData();
   LPSTR lpsz = (LPSTR)string.m_pchData;
#else
   CStringData* pOldData = string.GetData();
   LPWSTR lpsz = (LPWSTR)string.m_pchData;
#endif
   lpsz[nNewLen] = ''/0'';    // must be NUL terminated
   string.Init();   // don''t delete the old data
   string = lpsz;   // convert with operator=(LPWCSTR)
   CString::FreeData(pOldData);
  }
 }
 return ar;
}
.CObject派生對象的讀寫

MFC中多數類都從CObject類派生,CObject類與CArchive類有着良好的合作關係,能實現將對象序列化儲存到文件或其他媒介中去,或者讀取預先儲存的對象,動態建立對象等功能。

①CObject定義了針對CArvhive的輸入輸出操作符,可以向其他基本數據類型一樣使用"<<"、"<<"符號

CArchive& AFXAPI operator<<(CArchive& ar, const CObject* pOb)
 { ar.WriteObject(pOb); return ar; }
CArchive& AFXAPI operator>>(CArchive& ar, CObject*& pOb)
 { pOb = ar.ReadObject(NULL); return ar; }
當使用這些符號時,實際上執行的是CArchive的WriteObject和ReadObject成員

②WriteObject與ReadObject

在WriteObject與ReadObject中先寫入或讀取運行時類信息(CRuntimeClas),再調用Serialze(..),按其中的代碼讀寫具體的對象數據。

因此,只要在CObject派生類中重載Serilize()函數,寫入具體的讀寫過程,就可以使對象具有存儲與創建能力。

//將對象寫入到緩衝區
void CArchive::WriteObject(const CObject* pOb)
{  DWORD nObIndex;
 // make sure m_pStoreMap is initialized
 MapObject(NULL);
 if (pOb == NULL)
 {
  // save out null tag to represent NULL pointer
  *this << wNullTag;
 }
 else if ((nObIndex = (DWORD)(*m_pStoreMap)[(void*)pOb]) != 0)
  // assumes initialized to 0 map
 {
  // save out index of already stored object
  if (nObIndex < wBigObjectTag)
   *this << (WORD)nObIndex;
  else
  {
   *this << wBigObjectTag;
   *this << nObIndex;
  }
 }
 else
 {
  // write class of object first
  CRuntimeClass* pClassRef = pOb-> GetRuntimeClass();
  WriteClass(pClassRef);  //寫入運行類信息
  // enter in stored object table, checking for overflow
  CheckCount();
  (*m_pStoreMap)[(void*)pOb] = (void*)m_nMapCount++;
  // 調用CObject的Serialize成員,按其中的代碼寫入類中數據。
  ((CObject*)pOb)-> Serialize(*this);
 }
}
CObject* CArchive::ReadObject(const CRuntimeClass* pClassRefRequested)
{
 // attempt to load next stream as CRuntimeClass
 UINT nSchema;
 DWORD obTag;
 //先讀入運行時類信息
 CRuntimeClass* pClassRef = ReadClass(pClassRefRequested, &nSchema, &obTag);
 // check to see if tag to already loaded object
 CObject* pOb;
 if (pClassRef == NULL)
 {
  if (obTag > (DWORD)m_pLoadArray-> GetUpperBound())
  {
   // tag is too large for the number of objects read so far
   AfxThrowArchiveException(CArchiveException::badIndex,
    m_strFileName);
  }
  pOb = (CObject*)m_pLoadArray-> GetAt(obTag);
  if (pOb != NULL && pClassRefRequested != NULL &&
    !pOb-> IsKindOf(pClassRefRequested))
  {
   // loaded an object but of the wrong class
   AfxThrowArchiveException(CArchiveException::badClass,
    m_strFileName);
  }
 }
 else
 {
  // 建立對象
  pOb = pClassRef-> CreateObject();
  if (pOb == NULL)
   AfxThrowMemoryException();
  // Add to mapping array BEFORE de-serializing
  CheckCount();
  m_pLoadArray-> InsertAt(m_nMapCount++, pOb);
  // Serialize the object with the schema number set in the archive
  UINT nSchemaSave = m_nObjectSchema;
  m_nObjectSchema = nSchema;
  pOb-> Serialize(*this); //調用CObject的Serialize,按其中代碼讀入對象數據。
  m_nObjectSchema = nSchemaSave;
  ASSERT_VALID(pOb);
 }
 return pOb;
}
③運行時類信息的讀寫

爲了避免衆多重複的同類對象寫入重複的類信息,CArchive中使用CMap對象儲存和檢索類信息。

void CArchive::WriteClass(const CRuntimeClass* pClassRef)
{  ASSERT(pClassRef != NULL);
 ASSERT(IsStoring());    // proper direction
 if (pClassRef-> m_wSchema == 0xFFFF)
 {
  TRACE1("Warning: Cannot call WriteClass/WriteObject for %hs./n",
   pClassRef-> m_lpszClassName);
  AfxThrowNotSupportedException();
 }
 // make sure m_pStoreMap is initialized
 MapObject(NULL);
 // write out class id of pOb, with high bit set to indicate
 // new object follows
 // ASSUME: initialized to 0 map
 DWORD nClassIndex;
 if ((nClassIndex = (DWORD)(*m_pStoreMap)[(void*)pClassRef]) != 0)
 {
  // previously seen class, write out the index tagged by high bit
  if (nClassIndex < wBigObjectTag)
   *this << (WORD)(wClassTag | nClassIndex);
  else
  {
   *this << wBigObjectTag;
   *this << (dwBigClassTag | nClassIndex);
  }
 }
 else
 {
  // store new class
  *this << wNewClassTag;
  pClassRef-> Store(*this);
  // store new class reference in map, checking for overflow
  CheckCount();
  (*m_pStoreMap)[(void*)pClassRef] = (void*)m_nMapCount++;
 }
}
CRuntimeClass* CArchive::ReadClass(const CRuntimeClass* pClassRefRequested,
 UINT* pSchema, DWORD* pObTag)
{  ASSERT(pClassRefRequested == NULL ||
  AfxIsValidAddress(pClassRefRequested, sizeof(CRuntimeClass), FALSE));
 ASSERT(IsLoading());    // proper direction
 if (pClassRefRequested != NULL && pClassRefRequested-> m_wSchema == 0xFFFF)
 {
  TRACE1("Warning: Cannot call ReadClass/ReadObject for %hs./n",
   pClassRefRequested-> m_lpszClassName);
  AfxThrowNotSupportedException();
 }
 // make sure m_pLoadArray is initialized
 MapObject(NULL);
 // read object tag - if prefixed by wBigObjectTag then DWORD tag follows
 DWORD obTag;
 WORD wTag;
 *this >> wTag;
 if (wTag == wBigObjectTag)
  *this >> obTag;
 else
  obTag = ((wTag & wClassTag) << 16) | (wTag & ~wClassTag);
 // check for object tag (throw exception if expecting class tag)
 if (!(obTag & dwBigClassTag))
 {
  if (pObTag == NULL)
   AfxThrowArchiveException(CArchiveException::badIndex, m_strFileName);
  *pObTag = obTag;
  return NULL;
 }
 CRuntimeClass* pClassRef;
 UINT nSchema;
 if (wTag == wNewClassTag)
 {
  // new object follows a new class id
  if ((pClassRef = CRuntimeClass::Load(*this, &nSchema)) == NULL)
   AfxThrowArchiveException(CArchiveException::badClass, m_strFileName);
  // check nSchema against the expected schema
  if ((pClassRef-> m_wSchema & ~VERSIONABLE_SCHEMA) != nSchema)
  {
   if (!(pClassRef-> m_wSchema & VERSIONABLE_SCHEMA))
   {
    // schema doesn''t match and not marked as VERSIONABLE_SCHEMA
    AfxThrowArchiveException(CArchiveException::badSchema,
     m_strFileName);
   }
   else
   {
    // they differ -- store the schema for later retrieval
    if (m_pSchemaMap == NULL)
     m_pSchemaMap = new CMapPtrToPtr;
    ASSERT_VALID(m_pSchemaMap);
    m_pSchemaMap-> SetAt(pClassRef, (void*)nSchema);
   }
  }
  CheckCount();
  m_pLoadArray-> InsertAt(m_nMapCount++, pClassRef);
 }
 else
 {
  // existing class index in obTag followed by new object
  DWORD nClassIndex = (obTag & ~dwBigClassTag);
  if (nClassIndex == 0 || nClassIndex > (DWORD)m_pLoadArray-> GetUpperBound())
   AfxThrowArchiveException(CArchiveException::badIndex,
    m_strFileName);
  pClassRef = (CRuntimeClass*)m_pLoadArray-> GetAt(nClassIndex);
  ASSERT(pClassRef != NULL);
  // determine schema stored against objects of this type
  void* pTemp;
  BOOL bFound = FALSE;
  nSchema = 0;
  if (m_pSchemaMap != NULL)
  {
   bFound = m_pSchemaMap-> Lookup( pClassRef, pTemp );
   if (bFound)
    nSchema = (UINT)pTemp;
  }
  if (!bFound)
   nSchema = pClassRef-> m_wSchema & ~VERSIONABLE_SCHEMA;
   }
 // check for correct derivation
 if (pClassRefRequested != NULL &&
  !pClassRef-> IsDerivedFrom(pClassRefRequested))
 {
  AfxThrowArchiveException(CArchiveException::badClass, m_strFileName);
 }
 // store nSchema for later examination
 if (pSchema != NULL)
  *pSchema = nSchema;
 else
  m_nObjectSchema = nSchema;
 // store obTag for later examination
 if (pObTag != NULL)
  *pObTag = obTag;
 // return the resulting CRuntimeClass*
 return pClassRef;
}
 
發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章