[Help] Proximal mapping

1. Properties of Proximal mapping

For a convex function h(x) , its proximal mapping is defined as:

Proxh(x)=argminu{h(u)+12ux22}.

From the fact that the objective function is strictly convex, we know that Proxh(x) exists and is unique for all x. If u=Proxh(x) , we have
xuh(u).

1.1 L1 Lipschitz and monotone

Theorem: Proximal mapping for any convex function h(x) is L1 Lipschitz and monotone, that is to say

  • Lipschitz:Proxh(x)Proxh(y)2xy2.
  • Monotone: (Proxh(x)Proxh(y))T(xy)0.

proof: From the definition of proximal mapping, if u=Proxh(x) and u^=Proxh(x^) , we have

xuh(u)x^u^h(u^)

Then from the convexity,
h(u)h(u^)h(u^)+h(u^)T(uu^)h(u)+h(u)T(u^u)

we have
(h(u)h(u^))T(uu^)0,

which means that
(xu(x^u^))T(uu^)0,

Then,
0uu^22(xx^)T(uu^)monotonexx^2uu^2Lipschitz.

1.2 Projection Property

Theorem: Proximal mapping for any convex function h(x) acts just like a Projection function, and its orthogonal projection is the proximal function corresponding to its conjugate function, that is to say

x=Proxh(x)+Proxh(x).

proof: If u=Proxh(x) , we have v=xuh(u) . From the definition of conjugate function:

h(v)=maxz{vTzh(z)}=vTuh(u)

from which, we have u=xvh(v), then v=Proxh(x).
So
x=u+v=Proxh(x)+Proxh(x).

1.3 Scaling and translation argument

Theorem: Let h(x)=f(tx+a) , then

Proxh(x)=1t(Proxt2f(tx+a)a)

proof: Assume u=Proxh(x) , then we have
xuh(u)=tf(tu+a)

Then
(tx+a)(tu+a)t2f(tu+a)

so we have
tu+a=Proxt2f(tx+a)

so
u=Proxh(x)=1t(Proxt2f(tx+a)a).
發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章