EM算法中三硬幣模型M步的推導

觀測數據 來自擲硬幣B的概率爲$u_j^{(i + 1)}$來自擲硬幣C的概率爲$1 - u_j^{(i + 1)}$則:

{\bf{Q}}({\theta ^{(i + 1)}},{\theta ^{(i)}}) = \sum\limits_{j = 1}^n {\sum\limits_z {\log } } P({y_j},z|{\theta ^{(i + 1)}})P(z|{y_j},{\theta ^{(i)}})\\ {\rm{ = }}\sum\limits_{j = 1}^n {u_j^{(i + 1)}\log \pi {p^{{y_j}}}{{(1 - p)}^{1 - {y_j}}} + (1 - u_j^{(i + 1)})\log (1 - \pi ){q^{{y_j}}}{{(1 - q)}^{1 - {y_j}}}} \\ = \sum\limits_{j = 1}^n {u_j^{(i + 1)}[\log \pi + {y_j}\log p + (1 - {y_j})\log (1 - p)] + (1 - u_j^{(i + 1)})[\log (1 - \pi ) + } {{\rm{y}}_j}\log q + (1 - {y_j})\log (1 - q)]{\rm{ }}\]

分別對$\pi ,p,q$求偏導:

\frac{{\partial {\bf{Q}}}}{{\partial \pi }} = \frac{{\sum\limits_{j = 1}^n {{u_j}} }}{\pi } - \frac{{\sum\limits_{j = 1}^n {1 - {u_j}} }}{{(1 - \pi )}} = 0 \Rightarrow {\pi ^{(i + 1)}} = \frac{1}{n}\sum\limits_{j = 1}^n {u_j^{(i + 1)}}

\frac{{\partial {\bf{Q}}}}{{\partial \pi }} = \frac{{\sum\limits_{j = 1}^n {{u_j}} }}{\pi } - \frac{{\sum\limits_{j = 1}^n {1 - {u_j}} }}{{(1 - \pi )}} = 0 \Rightarrow {\pi ^{(i + 1)}} = \frac{1}{n}\sum\limits_{j = 1}^n {u_j^{(i + 1)}}

\frac{{\partial {\bf{Q}}}}{{\partial q}} = \frac{{\sum\limits_{j = 1}^n {(1 - u_j^{(i + 1)})} {y_j}}}{q} - \frac{{\sum\limits_{j = 1}^n {(1 - u_j^{(i + 1)})(1 - {y_j})} }}{{(1 - q)}} = 0 \Rightarrow {q^{(i + 1)}} = \frac{{\sum\limits_{j = 1}^n {(1 - u_j^{(i + 1)}){y_j}} }}{{\sum\limits_{j = 1}^n {(1 - u_j^{(i + 1)})} }}

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章