我所理解的堆排序算法 (轉載)


      堆排序在最壞的情況下,其時間複雜度也能達到O(nlogn)。相對於快速排序來說,
這是它最大的優點,此外,堆排序僅需要一個記錄大小供交換用的輔助存儲空間。
      堆排序的數據結構是二叉堆,二叉堆的特點有兩個,一個是它是一棵完全二叉樹,
另一個是它的根結點小於孩子結點,所以我們很容易找到它的最小結點----根結點;當然
如果你想找到最大結點的話,那就要掃描所有的葉子結點,這是很費時間的,如果你想找的
是最大結點的話,你最好把它弄成一個大頂堆,即一棵根結點大於孩子結點的完全二叉樹。
      二叉堆通常用數組來實現,它捨棄下標0,從下標1開始置數,則很容易滿足,對於數組
中任意位置i上的元素,其左兒子的位置在2i上,右兒子的位置在2i+1上,雙親的位置則在
i/2上。
      堆排序的算法之一是把數組構建成二叉堆----這隻要增添一個長度爲n+1的輔助空間,
然後把原數組的元素依次插入到二叉堆即可。然後刪除二叉堆的根,把它作爲排序後的數組
的第一個元素,然後使二叉堆的長度減1,並通過上移使得新得到的序列仍爲二叉堆,
再提取新二叉堆的第一個元素到新數組。依此類推,直到提取最後一個元素,
新得到的數組就是排序後的數組。
template <class T>
void Insert(T a[], int len, T x)//把x插入到原長度爲len的二叉堆,注意保證新二叉堆不越界
{
      int i;
      for (i=len; i/2>0 && a[i/2]>x; i/=2)
            a[i] = a[i/2];
      a[i] = x;
}

template <class T>
T DeleteMin(T a[], int len)//刪除二叉堆的根,並通過上移使得新得到的序列仍爲二叉堆
{
      if (len == 0)
            exit(1);
      T min = a[1];//二叉堆的根
      T last = a[len--];//二叉堆的最後一個元素

      int c;
      int i;
      for (i=1; i*2<=len; i=c)//把二叉堆的某些元素往前移,使得新得到的序列仍爲二叉堆
      {
            c = i * 2;//i的左兒子
            if (c != len && a[c+1] < a[c])//若i有右兒子,且右兒子小於左兒子,c指向右兒子
                  c++;

            if (last > a[c])//若i的小兒子小於二叉堆的最後一個元素,把其移到i的位置
                  a[i] = a[c];
            else
                  break;
      }
      a[i] = last; //把二叉堆的最後一個元素放到適當的空位,此時得到的序列仍爲二叉堆

      return min;
}

template <class T>
void HeapSort(T a[], int len)
{
      T *ca = new T[len+1]; //複製原數組到二叉堆
      ca[0] = 0;
      for (int i=0; i<len; i++) //把元素依次插入到二叉堆
            Insert(ca, i+1, a[i]);

      for (int i=0; i<len; i++)//依次提取二叉堆的根作爲排序後的數組的元素
      {
            a[i] = DeleteMin(ca, len-i);
      }

      a[len-1] = ca[1]; //注意不能忘了最後一個元素

      delete []ca;
}
      在《數據結構習題與解析》(李春葆 編著 清華大學出版社)中看到一個類似的算法,
它是把原數組構建成一個大頂堆,然後把大頂堆的第一個元素與最後一個元素交換;
再把前n-1個元素重新構造成一個大頂堆,把新大頂堆的第一個元素與最後一個元素交換;
依此類推,直到新大頂堆只有一個元素,這樣就得到了一個有序的二叉堆。
算法如下:
template <class T>
void HeapSort(T a[], int len)
{
      T *ca = new T[len+1];
      ca[0] = 0;
      for (int i=0; i<len; i++)
            ca[i+1] = a[i];

      for (int i=len/2; i>0; i--) //建立初始堆
            HeapAdjust(ca, len, i);

      for (int i=len; i>1; i--)//進行len-1次循環,完成堆排序
      {
            Swap(ca[1], ca[i]); //新大頂堆的第一個元素與最後一個元素交換
            HeapAdjust(ca, i-1, 1);//篩a[1]元素,得到i-1個元素的堆
      }

      for (int i=0; i<len; i++)
            a[i] = ca[i+1];

      delete []ca;
}

template <class T>
void HeapAdjust(T a[], int len, int left) //將i與其小兒子交換位置
{
      if (len == 0)
            exit(1);

      T x = a[left];
      int i = left;
      int c = 2 * i;
      while (c <= len)
      {
            if (c < len && a[c+1] > a[c])//若i有右兒子,且右兒子大於左兒子,c指向右兒子
                  c++;
            if (last < a[c])//若i的大兒子大於二叉堆的最後一個元素,把其移到i的位置
            {
                  a[i] = a[c];
                  i = c;
                  c = 2 * i;
            }
            else
                  break;
      }
      a[i] = x; //把原二叉堆的第一個元素放到適當的空位
}

template <class T>
void Swap(T & a, T & b)
{
      T t = a;
      a = b;
      b = t;
}

      還有一種方法是每次都要重新調整大頂堆,使得父親比兒子大,這樣調整的函數較簡單,
但因爲每次都要遍歷一半的元素,時間複雜度較大。
算法如下:
template <class T>
void HeapSort(T a[], int len)
{
      T *ca = new T[len+1];
      ca[0] = 0;
      for (int i=0; i<len; i++)
            ca[i+1] = a[i];

      for (int i=len/2; i>0; i--) //把原數組構建成一個大頂堆
            HeapAdjust(ca, len, i);
      Swap(ca[1], ca[len]); //把大頂堆的第一個元素與最後一個元素交換
     
      for (int i=len-1; i>0; i--)
      {
            for (int j=i/2; j>0; j--)//遍歷長度爲i的堆,得到新的大頂堆
                  HeapAdjust(ca, i, j);
            Swap(ca[1], ca[i]);
      }
     
      for (int i=0; i<len; i++)
            a[i] = ca[i+1];

      delete []ca;
}

template <class T>
void HeapAdjust(T a[], int len, int i) //將i與其小兒子交換位置
{
      int c = 2 * i;

      if (c < len)
      {
            T & max = (a[c] > a[c+1])? a[c] : a[c+1];
            if (a[i] < max)
                  Swap(a[i], max);
      }
      else
      {
            if (a[i] < a[c])
                  Swap(a[i], a[c]);
      }
}

template <class T>
void Swap(T & a, T & b)
{
      T t = a;
      a = b;
      b = t;
}

      模仿構造大頂堆的方法,我們可以調用HeapAdjust()構造一個二叉堆,並提取二叉堆的根到新數組,
然後把原二叉堆的最後一個元素放到根的位置,再調用HeapAdjust()構造一個新二叉堆,依此類推。
算法如下:
template <class T>
void HeapSort(T a[], int len)
{
      T *ca = new T[len+1];
      ca[0] = 0;
      for (int i=0; i<len; i++)
            ca[i+1] = a[i];

      for (int i=len/2; i>0; i--) //把原數組構建成一個大頂堆
            HeapAdjust(ca, len, i);
      a[0] = ca[1];
      ca[1] = ca[len]; //把二叉堆的最後一個元素放到根的位置

      for (int i=len-1; i>0; i--)
      {
            for (int j=i/2; j>0; j--)
                  HeapAdjust(ca, i, j);
            a[len-i] = ca[1];
            ca[1] = ca[i]; //把二叉堆的最後一個元素放到根的位置
      }

      delete []ca;
}

template <class T>
void HeapAdjust(T a[], int len, int i)
{
      int c = 2 * i;

      if (c < len)
      {
            T & min = (a[c] < a[c+1])? a[c] : a[c+1];
            if (a[i] > min)
                  Swap(a[i], min);
      }
      else
      {
            if (a[i] > a[c])
                  Swap(a[i], a[c]);
      }
}

template <class T>
void Swap(T & a, T & b)
{
      T t = a;
      a = b;
      b = t;
}
      後面兩種方法採用的是遞歸,容易理解,但時間複雜度較高,因爲比前兩種要慢上很多,
所以不可能是O(nlogn),估計是O(n^2),但具體我也不會算,請。

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章