什麼是一級緩存

   CPU緩存(Cache Memory)是位於CPU與內存之間的臨時存儲器,
它的容量比內存小的多但是交換速度卻比內存要快得多。緩存的出現主要是爲了解決CPU運算速度與內存讀寫速度不匹配的矛盾,因爲CPU運算速度要比內存讀
寫速度快很多,這樣會使CPU花費很長時間等待數據到來或把數據寫入內存。在緩存中的數據是內存中的一小部分,但這一小部分是短時間內CPU即將訪問的,
當CPU調用大量數據時,就可避開內存直接從緩存中調用,從而加快讀取速度。由此可見,在CPU中加入緩存是一種高效的解決方案,這樣整個內存儲器(緩
存+內存)就變成了既有緩存的高速度,又有內存的大容量的存儲系統了。緩存對CPU的性能影響很大,主要是因爲CPU的數據交換順序和CPU與緩存間的帶
寬引起的。

   
緩存的工作原理是當CPU要讀取一個數據時,首先從緩存中查找,如果找到就立即讀取並送給CPU處理;如果沒有找到,就用相對慢的速度從內存中讀取並送給
CPU處理,同時把這個數據所在的數據塊調入緩存中,可以使得以後對整塊數據的讀取都從緩存中進行,不必再調用內存。

   
正是這樣的讀取機制使CPU讀取緩存的命中率非常高(大多數CPU可達90%左右),也就是說CPU下一次要讀取的數據90%都在緩存中,只有大約10%
需要從內存讀取。這大大節省了CPU直接讀取內存的時間,也使CPU讀取數據時基本無需等待。總的來說,CPU讀取數據的順序是先緩存後內存。

    目前緩存基本上都是採用SRAM存儲器,SRAM是英文Static
RAM的縮寫,它是一種具有靜志存取功能的存儲器,不需要刷新電路即能保存它內部存儲的數據。不像DRAM內存那樣需要刷新電路,每隔一段時間,固定要對
DRAM刷新充電一次,否則內部的數據即會消失,因此SRAM具有較高的性能,但是SRAM也有它的缺點,即它的集成度較低,相同容量的DRAM內存可以
設計爲較小的體積,但是SRAM卻需要很大的體積,這也是目前不能將緩存容量做得太大的重要原因。它的特點歸納如下:優點是節能、速度快、不必配合內存刷
新電路、可提高整體的工作效率,缺點是集成度低、相同的容量體積較大、而且價格較高,只能少量用於關鍵性系統以提高效率。

   
按照數據讀取順序和與CPU結合的緊密程度,CPU緩存可以分爲一級緩存,二級緩存,部分高端CPU還具有三級緩存,每一級緩存中所儲存的全部數據都是下
一級緩存的一部分,這三種緩存的技術難度和製造成本是相對遞減的,所以其容量也是相對遞增的。當CPU要讀取一個數據時,首先從一級緩存中查找,如果沒有
找到再從二級緩存中查找,如果還是沒有就從三級緩存或內存中查找。一般來說,每級緩存的命中率大概都在80%左右,也就是說全部數據量的80%都可以在一
級緩存中找到,只剩下20%的總數據量才需要從二級緩存、三級緩存或內存中讀取,由此可見一級緩存是整個CPU緩存架構中最爲重要的部分。

    一級緩存(Level 1 Cache)簡稱L1
Cache,位於CPU內核的旁邊,是與CPU結合最爲緊密的CPU緩存,也是歷史上最早出現的CPU緩存。由於一級緩存的技術難度和製造成本最高,提高
容量所帶來的技術難度增加和成本增加非常大,所帶來的性能提升卻不明顯,性價比很低,而且現有的一級緩存的命中率已經很高,所以一級緩存是所有緩存中容量
最小的,比二級緩存要小得多。

    一般來說,一級緩存可以分爲一級數據緩存(Data
Cache,D-Cache)和一級指令緩存(Instruction
Cache,I-Cache)。二者分別用來存放數據以及對執行這些數據的指令進行即時解碼,而且兩者可以同時被CPU訪問,減少了爭用Cache所造成
的衝突,提高了處理器效能。目前大多數CPU的一級數據緩存和一級指令緩存具有相同的容量,例如AMD的Athlon
XP就具有64KB的一級數據緩存和64KB的一級指令緩存,其一級緩存就以64KB+64KB來表示,其餘的CPU的一級緩存表示方法以此類推。

    Intel的採用NetBurst架構的CPU(最典型的就是Pentium
4)的一級緩存有點特殊,使用了新增加的一種一級追蹤緩存(Execution Trace
Cache,T-Cache或ETC)來替代一級指令緩存,容量爲12KμOps,表示能存儲12K條即12000條解碼後的微指令。一級追蹤緩存
與一級指令緩存的運行機制是不相同的,一級指令緩存只是對指令作即時的解碼而並不會儲存這些指令,而一級追蹤緩存同樣會將一些指令作解碼,這些指令稱爲微
指令(micro-ops),而這些微指令能儲存在一級追蹤緩存之內,無需每一次都作出解碼的程序,因此一級追蹤緩存能有效地增加在高工作頻率下對指令的
解碼能力,而μOps就是micro-ops,也就是微型操作的意思。它以很高的速度將μops提供給處理器核心。Intel
NetBurst微型架構使用執行跟蹤緩存,將解碼器從執行循環中分離出來。這個跟蹤緩存以很高的帶寬將uops提供給核心,從本質上適於充分利用軟件中
的指令級並行機制。Intel並沒有公佈一級追蹤緩存的實際容量,只知道一級追蹤緩存能儲存12000條微指令(micro-ops)。所以,我們不能簡
單地用微指令的數目來比較指令緩存的大小。實際上,單核心的NetBurst架構CPU使用8Kμops的緩存已經基本上夠用了,多出的
4kμops可以大大提高緩存命中率。而如果要使用超線程技術的話,12KμOps就會有些不夠用,這就是爲什麼有時候Intel處理器在使
用超線程技術時會導致性能下降的重要原因。

   
例如Northwood核心的一級緩存爲8KB+12KμOps,就表示其一級數據緩存爲8KB,一級追蹤緩存爲12KμOps;而
Prescott核心的一級緩存爲16KB+12KμOps,就表示其一級數據緩存爲16KB,一級追蹤緩存爲12KμOps。在這裏
12KμOps絕對不等於12KB,單位都不同,一個是μOps,一個是Byte(字節),而且二者的運行機制完全不同。所以那些把
Intel的CPU一級緩存簡單相加,例如把Northwood核心說成是20KB一級緩存,把Prescott核心說成是28KB一級緩存,並且據此認
爲Intel處理器的一級緩存容量遠遠低於AMD處理器128KB的一級緩存容量的看法是完全錯誤的,二者不具有可比性。在架構有一定區別的CPU對比
中,很多緩存已經難以找到對應的東西,即使類似名稱的緩存在設計思路和功能定義上也有區別了,此時不能用簡單的算術加法來進行對比;而在架構極爲近似的
CPU對比中,分別對比各種功能緩存大小纔有一定的意義。
發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章