解析 STM32 的啓動過程 (寫的不錯(轉))

解析STM32的啓動過程

  當前的嵌入式應用程序開發過程裏,並且C語言成爲了絕大部分場合的最佳選擇。如此一來main函數似乎成爲了理所當然的起點——因爲C程序往往從main函數開始執行。但一個經常會被忽略的問題是:微控制器(單片機)上電後,是如何尋找到並執行main函數的呢?很顯然微控制器無法從硬件上定位main函數的入口地址,因爲使用C語言作爲開發語言後,變量/函數的地址便由編譯器在編譯時自行分配,這樣一來main函數的入口地址在微控制器的內部存儲空間中不再是絕對不變的。相信讀者都可以回答這個問題,答案也許大同小異,但肯定都有個關鍵詞,叫“啓動文件”,用英文單詞來描述是“Bootloader”。

  無論性能高下,結構簡繁,價格貴賤,每一種微控制器(處理器)都必須有啓動文件,啓動文件的作用便是負責執行微控制器從“復位”到“開始執行main函數”中間這段時間(稱爲啓動過程)所必須進行的工作。最爲常見的51,AVR或MSP430等微控制器當然也有對應啓動文件,但開發環境往往自動完整地提供了這個啓動文件,不需要開發人員再行干預啓動過程,只需要從main函數開始進行應用程序的設計即可。

  話題轉到STM32微控制器,無論是keil

  UVision4還是IAR EWARM開發環境,ST公司都提供了現成的直接可用的啓動文件,程序開發人員可以直接引用啓動文件後直接進行C應用程序的開發。這樣能大大減小開發人員從其它微控制器平臺跳轉至STM32平臺,也降低了適應STM32微控制器的難度(對於上一代ARM的當家花旦ARM9,啓動文件往往是第一道難啃卻又無法逾越的坎)。 相對於ARM上一代的主流ARM7/ARM9內核架構,新一代Cortex內核架構的啓動方式有了比較大的變化。ARM7/ARM9內核的控制器在復位後,CPU會從存儲空間的絕對地址0x000000取出第一條指令執行復位中斷服務程序的方式啓動,即固定了復位後的起始地址爲0x000000(PC = 0x000000)同時中斷向量表的位置並不是固定的。而Cortex-M3內核則正好相反,有3種情況:

  1、 通過boot引腳設置可以將中斷向量表定位於SRAM區,即起始地址爲0x2000000,同時復位後PC指針位於0x2000000處;

  2、 通過boot引腳設置可以將中斷向量表定位於FLASH區,即起始地址爲0x8000000,同時復位後PC指針位於0x8000000處;

  3、 通過boot引腳設置可以將中斷向量表定位於內置Bootloader區,本文不對這種情況做論述;

  而Cortex-M3內核規定,起始地址必須存放堆頂指針,而第二個地址則必須存放復位中斷入口向量地址,這樣在Cortex-M3內核復位後,會自動從起始地址的下一個32位空間取出復位中斷入口向量,跳轉執行復位中斷服務程序。對比ARM7/ARM9內核,Cortex-M3內核則是固定了中斷向量表的位置而起始地址是可變化的。

  有了上述準備只是後,下面以STM32的2.02固件庫提供的啓動文件“stm32f10x_vector.s”爲模板,對STM32的啓動過程做一個簡要而全面的解析。

  程序清單一:

  ;文件“stm32f10x_vector.s”,其中註釋爲行號

  DATA_IN_ExtSRAM EQU 0 ;1
  Stack_Size EQU 0x00000400 ;2
  AREA STACK, NOINIT, READWRITE, ALIGN = 3 ;3
  Stack_Mem SPACE Stack_Size ;4
  __initial_sp ;5
  Heap_Size EQU 0x00000400 ;6
  AREA HEAP, NOINIT, READWRITE, ALIGN = 3 ;7
  __heap_base ;8
  Heap_Mem SPACE Heap_Size ;9
  __heap_limit ;10
  THUMB ;11
  PRESERVE8 ;12
  IMPORT NMIException ;13
  IMPORT HardFaultException ;14
  IMPORT MemManageException ;15
  IMPORT BusFaultException ;16
  IMPORT UsageFaultException ;17
  IMPORT SVCHandler ;18
  IMPORT DebugMonitor ;19
  IMPORT PendSVC ;20
  IMPORT SysTickHandler ;21
  IMPORT WWDG_IRQHandler ;22
  IMPORT PVD_IRQHandler ;23
  IMPORT TAMPER_IRQHandler ;24
  IMPORT RTC_IRQHandler ;25
  IMPORT FLASH_IRQHandler ;26
  IMPORT RCC_IRQHandler ;27
  IMPORT EXTI0_IRQHandler ;28
  IMPORT EXTI1_IRQHandler ;29
  IMPORT EXTI2_IRQHandler ;30
  IMPORT EXTI3_IRQHandler ;31
  IMPORT EXTI4_IRQHandler ;32
  IMPORT DMA1_Channel1_IRQHandler ;33
  IMPORT DMA1_Channel2_IRQHandler ;34
  IMPORT DMA1_Channel3_IRQHandler ;35
  IMPORT DMA1_Channel4_IRQHandler ;36
  IMPORT DMA1_Channel5_IRQHandler ;37
  IMPORT DMA1_Channel6_IRQHandler ;38
  IMPORT DMA1_Channel7_IRQHandler ;39
  IMPORT ADC1_2_IRQHandler ;40
  IMPORT USB_HP_CAN_TX_IRQHandler ;41
  IMPORT USB_LP_CAN_RX0_IRQHandler ;42
  IMPORT CAN_RX1_IRQHandler ;43
  IMPORT CAN_SCE_IRQHandler ;44
  IMPORT EXTI9_5_IRQHandler ;45
  IMPORT TIM1_BRK_IRQHandler ;46
  IMPORT TIM1_UP_IRQHandler ;47
  IMPORT TIM1_TRG_COM_IRQHandler ;48
  IMPORT TIM1_CC_IRQHandler ;49
  IMPORT TIM2_IRQHandler ;50
  IMPORT TIM3_IRQHandler ;51
  IMPORT TIM4_IRQHandler ;52
  IMPORT I2C1_EV_IRQHandler ;53
  IMPORT I2C1_ER_IRQHandler ;54
  IMPORT I2C2_EV_IRQHandler ;55
  IMPORT I2C2_ER_IRQHandler ;56
  IMPORT SPI1_IRQHandler ;57
  IMPORT SPI2_IRQHandler ;58
  IMPORT USART1_IRQHandler ;59
  IMPORT USART2_IRQHandler ;60
  IMPORT USART3_IRQHandler ;61
  IMPORT EXTI15_10_IRQHandler ;62
  IMPORT RTCAlarm_IRQHandler ;63
  IMPORT USBWakeUp_IRQHandler ;64
  IMPORT TIM8_BRK_IRQHandler ;65
  IMPORT TIM8_UP_IRQHandler ;66
  IMPORT TIM8_TRG_COM_IRQHandler ;67
  IMPORT TIM8_CC_IRQHandler ;68
  IMPORT ADC3_IRQHandler ;69
  IMPORT FSMC_IRQHandler ;70
  IMPORT SDIO_IRQHandler ;71
  IMPORT TIM5_IRQHandler ;72
  IMPORT SPI3_IRQHandler ;73
  IMPORT UART4_IRQHandler ;74
  IMPORT UART5_IRQHandler ;75
  IMPORT TIM6_IRQHandler ;76
  IMPORT TIM7_IRQHandler ;77
  IMPORT DMA2_Channel1_IRQHandler ;78
  IMPORT DMA2_Channel2_IRQHandler ;79
  IMPORT DMA2_Channel3_IRQHandler ;80
  IMPORT DMA2_Channel4_5_IRQHandler ;81
  AREA RESET, DATA, READONLY ;82
  EXPORT __Vectors ;83
  __Vectors ;84
  DCD __initial_sp ;85
  DCD Reset_Handler ;86
  DCD NMIException ;87
  DCD HardFaultException ;88
  DCD MemManageException ;89
  DCD BusFaultException ;90
  DCD UsageFaultException ;91
  DCD 0 ;92
  DCD 0 ;93
  DCD 0 ;94
  DCD 0 ;95
  DCD SVCHandler ;96
  DCD DebugMonitor ;97
  DCD 0 ;98
  DCD PendSVC ;99
  DCD SysTickHandler ;100
  DCD WWDG_IRQHandler ;101
  DCD PVD_IRQHandler ;102
  DCD TAMPER_IRQHandler ;103
  DCD RTC_IRQHandler ;104
  DCD FLASH_IRQHandler ;105
  DCD RCC_IRQHandler ;106
  DCD EXTI0_IRQHandler ;107
  DCD EXTI1_IRQHandler ;108
  DCD EXTI2_IRQHandler ;109
  DCD EXTI3_IRQHandler ;110
  DCD EXTI4_IRQHandler ;111
  DCD DMA1_Channel1_IRQHandler ;112
  DCD DMA1_Channel2_IRQHandler ;113
  DCD DMA1_Channel3_IRQHandler ;114
  DCD DMA1_Channel4_IRQHandler ;115
  DCD DMA1_Channel5_IRQHandler ;116
  DCD DMA1_Channel6_IRQHandler ;117
  DCD DMA1_Channel7_IRQHandler ;118
  DCD ADC1_2_IRQHandler ;119
  DCD USB_HP_CAN_TX_IRQHandler ;120
  DCD USB_LP_CAN_RX0_IRQHandler ;121
  DCD CAN_RX1_IRQHandler ;122
  DCD CAN_SCE_IRQHandler ;123
  DCD EXTI9_5_IRQHandler ;124
  DCD TIM1_BRK_IRQHandler ;125
  DCD TIM1_UP_IRQHandler ;126
  DCD TIM1_TRG_COM_IRQHandler ;127
  DCD TIM1_CC_IRQHandler ;128
  DCD TIM2_IRQHandler ;129
  DCD TIM3_IRQHandler ;130
  DCD TIM4_IRQHandler ;131
  DCD I2C1_EV_IRQHandler ;132
  DCD I2C1_ER_IRQHandler ;133
  DCD I2C2_EV_IRQHandler ;134
  DCD I2C2_ER_IRQHandler ;135
  DCD SPI1_IRQHandler ;136
  DCD SPI2_IRQHandler ;137
  DCD USART1_IRQHandler ;138
  DCD USART2_IRQHandler ;139
  DCD USART3_IRQHandler ;140
  DCD EXTI15_10_IRQHandler ;141
  DCD RTCAlarm_IRQHandler ;142
  DCD USBWakeUp_IRQHandler ;143
  DCD TIM8_BRK_IRQHandler ;144
  DCD TIM8_UP_IRQHandler ;145
  DCD TIM8_TRG_COM_IRQHandler ;146
  DCD TIM8_CC_IRQHandler ;147
  DCD ADC3_IRQHandler ;148
  DCD FSMC_IRQHandler ;149
  DCD SDIO_IRQHandler ;150
  DCD TIM5_IRQHandler ;151
  DCD SPI3_IRQHandler ;152
  DCD UART4_IRQHandler ;153
  DCD UART5_IRQHandler ;154
  DCD TIM6_IRQHandler ;155
  DCD TIM7_IRQHandler ;156
  DCD DMA2_Channel1_IRQHandler ;157
  DCD DMA2_Channel2_IRQHandler ;158
  DCD DMA2_Channel3_IRQHandler ;159
  DCD DMA2_Channel4_5_IRQHandler ;160
  AREA |.text|, CODE, READONLY ;161
  Reset_Handler PROC ;162
  EXPORT Reset_Handler ;163
  IF DATA_IN_ExtSRAM == 1 ;164
  LDR R0,= 0x00000114 ;165
  LDR R1,= 0x40021014 ;166
  STR R0,[R1] ;167
  LDR R0,= 0x000001E0 ;168
  LDR R1,= 0x40021018 ;169
  STR R0,[R1] ;170
  LDR R0,= 0x44BB44BB ;171
  LDR R1,= 0x40011400 ;172
  STR R0,[R1] ;173
  LDR R0,= 0xBBBBBBBB ;174
  LDR R1,= 0x40011404 ;175
  STR R0,[R1] ;176
  LDR R0,= 0xB44444BB ;177
  LDR R1,= 0x40011800 ;178
  STR R0,[R1] ;179
  LDR R0,= 0xBBBBBBBB ;180
  LDR R1,= 0x40011804 ;181
  STR R0,[R1] ;182
  LDR R0,= 0x44BBBBBB ;183
  LDR R1,= 0x40011C00 ;184
  STR R0,[R1] ;185
  LDR R0,= 0xBBBB4444 ;186
  LDR R1,= 0x40011C04 ;187
  STR R0,[R1] ;188
  LDR R0,= 0x44BBBBBB ;189
  LDR R1,= 0x40012000 ;190
  STR R0,[R1] ;191
  LDR R0,= 0x44444B44 ;192
  LDR R1,= 0x40012004 ;193
  STR R0,[R1] ;194
  LDR R0,= 0x00001011 ;195
  LDR R1,= 0xA0000010 ;196
  STR R0,[R1] ;197
  LDR R0,= 0x00000200 ;198
  LDR R1,= 0xA0000014 ;199
  STR R0,[R1] ;200
  ENDIF ;201
  IMPORT __main ;202
  LDR R0, =__main ;203
  BX R0 ;204
  ENDP ;205
  ALIGN ;206
  IF :DEF:__MICROLIB ;207
  EXPORT __initial_sp ;208
  EXPORT __heap_base ;209
  EXPORT __heap_limit ;210
  ELSE ;211
  IMPORT __use_two_region_memory ;212
  EXPORT __user_initial_stackheap ;213
  __user_initial_stackheap ;214
  LDR R0, = Heap_Mem ;215
  LDR R1, = (Stack_Mem + Stack_Size) ;216
  LDR R2, = (Heap_Mem + Heap_Size) ;217
  LDR R3, = Stack_Mem ;218
  BX LR ;219
  ALIGN ;220
  ENDIF ;221
  END ;222
  ENDIF ;223
  END ;224

  如程序清單一,STM32的啓動代碼一共224行,使用了彙編語言編寫,這其中的主要原因下文將會給出交代。現在從第一行開始分析:

  ? 第1行:定義是否使用外部SRAM,爲1則使用,爲0則表示不使用。此語行若用C語言表達則等價於:

  #define DATA_IN_ExtSRAM 0

  ? 第2行:定義棧空間大小爲0x00000400個字節,即1Kbyte。此語行亦等價於:

  #define Stack_Size 0x00000400

  ? 第3行:僞指令AREA,表示

  ? 第4行:開闢一段大小爲Stack_Size的內存空間作爲棧。

  ? 第5行:標號__initial_sp,表示棧空間頂地址。

  ? 第6行:定義堆空間大小爲0x00000400個字節,也爲1Kbyte。

  ? 第7行:僞指令AREA,表示

  ? 第8行:標號__heap_base,表示堆空間起始地址。

  ? 第9行:開闢一段大小爲Heap_Size的內存空間作爲堆。

  ? 第10行:標號__heap_limit,表示堆空間結束地址。

  ? 第11行:告訴編譯器使用THUMB指令集。

  ? 第12行:告訴編譯器以8字節對齊。

  ? 第13—81行:IMPORT指令,指示後續符號是在外部文件定義的(類似C語言中的全局變量聲明),而下文可能會使用到這些符號。

  ? 第82行:定義只讀數據段,實際上是在CODE區(假設STM32從FLASH啓動,則此中斷向量表起始地址即爲0x8000000)

  ? 第83行:將標號__Vectors聲明爲全局標號,這樣外部文件就可以使用這個標號。

  ? 第84行:標號__Vectors,表示中斷向量表入口地址。

  ? 第85—160行:建立中斷向量表。

  ? 第161行:

  ? 第162行:復位中斷服務程序,PROC…ENDP結構表示程序的開始和結束。

  ? 第163行:聲明覆位中斷向量Reset_Handler爲全局屬性,這樣外部文件就可以調用此復位中斷服務。

  ? 第164行:IF…ENDIF爲預編譯結構,判斷是否使用外部SRAM,在第1行中已定義爲“不使用”。

  ? 第165—201行:此部分代碼的作用是設置FSMC總線以支持SRAM,因不使用外部SRAM因此此部分代碼不會被編譯。

  ? 第202行:聲明__main標號。

  ? 第203—204行:跳轉__main地址執行。

  ? 第207行:IF…ELSE…ENDIF結構,判斷是否使用DEF:__MICROLIB(此處爲不使用)。

  ? 第208—210行:若使用DEF:__MICROLIB,則將__initial_sp,__heap_base,__heap_limit亦即棧頂地址,堆始末地址賦予全局屬性,使外部程序可以使用。

  ? 第212行:定義全局標號__use_two_region_memory。

  ? 第213行:聲明全局標號__user_initial_stackheap,這樣外程序也可調用此標號。

  ? 第214行:標號__user_initial_stackheap,表示用戶堆棧初始化程序入口。

  ? 第215—218行:分別保存棧頂指針和棧大小,堆始地址和堆大小至R0,R1,R2,R3寄存器。

  ? 第224行:程序完畢。

  以上便是STM32的啓動代碼的完整解析,接下來對幾個小地方做解釋:

  1、 AREA指令:僞指令,用於定義代碼段或數據段,後跟屬性標號。其中比較重要的一個標號爲“READONLY”或者“READWRITE”,其中“READONLY”表示該段爲只讀屬性,聯繫到STM32的內部存儲介質,可知具有隻讀屬性的段保存於FLASH區,即0x8000000地址後。而“READONLY”表示該段爲“可讀寫”屬性,可知“可讀寫”段保存於SRAM區,即0x2000000地址後。由此可以從第3、7行代碼知道,堆棧段位於SRAM空間。從第82行可知,中斷向量表放置與FLASH區,而這也是整片啓動代碼中最先被放進FLASH區的數據。因此可以得到一條重要的信息:0x8000000地址存放的是棧頂地址__initial_sp,0x8000004地址存放的是復位中斷向量Reset_Handler(STM32使用32位總線,因此存儲空間爲4字節對齊)。

  2、 DCD指令:作用是開闢一段空間,其意義等價於C語言中的地址符“&”。因此從第84行開始建立的中斷向量表則類似於使用C語言定義了一個指針數組,其每一個成員都是一個函數指針,分別指向各個中斷服務函數。

  3、 標號:前文多處使用了“標號”一詞。標號主要用於表示一片內存空間的某個位置,等價於C語言中的“地址”概念。地址僅僅表示存儲空間的一個位置,從C語言的角度來看,變量的地址,數組的地址或是函數的入口地址在本質上並無區別。

  4、 第202行中的__main標號並不表示C程序中的main函數入口地址,因此第204行也並不是跳轉至main函數開始執行C程序。__main標號表示C/C++標準實時庫函數裏的一個初始化子程序__main的入口地址。該程序的一個主要作用是初始化堆棧(對於程序清單一來說則是跳轉__user_initial_stackheap標號進行初始化堆棧的),並初始化映像文件,最後跳轉C程序中的main函數。這就解釋了爲何所有的C程序必須有一個main函數作爲程序的起點——因爲這是由C/C++標準實時庫所規定的——並且不能更改,因爲C/C++標準實時庫並不對外界開發源代碼。因此,實際上在用戶可見的前提下,程序在第204行後就跳轉至.c文件中的main函數,開始執行C程序了。

  至此可以總結一下STM32的啓動文件和啓動過程。首先對棧和堆的大小進行定義,並在代碼區的起始處建立中斷向量表,其第一個表項是棧頂地址,第二個表項是復位中斷服務入口地址。然後在復位中斷服務程序中跳轉¬¬C/C++標準實時庫的__main函數,完成用戶堆棧等的初始化後,跳轉.c文件中的main函數開始執行C程序。假設STM32被設置爲從內部FLASH啓動(這也是最常見的一種情況),中斷向量表起始地位爲0x8000000,則棧頂地址存放於0x8000000處,而復位中斷服務入口地址存放於0x8000004處。當STM32遇到復位信號後,則從0x80000004處取出復位中斷服務入口地址,繼而執行復位中斷服務程序,然後跳轉__main函數,最後進入mian函數,來到C的世界。

分享一些stm32方面的資料

(stm32串口應用)

http://www.makeru.com.cn/live/1392_1164.html?s=45051

STM32可以這樣玩

http://www.makeru.com.cn/live/4034_1460.html?s=45051

(stm32直流電機驅動)

http://www.makeru.com.cn/live/1392_1218.html?s=45051


發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章