(1,1)類型機器人的運動學建模與驅動

Parameterization

Figure shows the schematic representation of the robot(1,1)(1,1)
在這裏插入圖片描述

【考點1】Table of parameters of (1,1) robot

wheel L α\alpha d β\beta γ\gamma φ\varphi Φ=α+β+γ\Phi=\alpha+\beta+\gamma
1f1f a π2-\frac{\pi}{2} 0 0 π2\frac{\pi}{2} φ1f\varphi_{1f} 0
2f2f a π2\frac{\pi}{2} 0 0 π2-\frac{\pi}{2} φ2f\varphi_{2f} 0
3s3s b 0 0 β3s\beta_{3s} 0 φ3s\varphi_{3s} β3s\beta_{3s}

【考點2】configuration vector q
q=[x,y,θ,β3s,φ1f,φ2f,φ3s]Tq=\left[x, y, \theta, \beta_{3 s}, \varphi_{1 f}, \varphi_{2 f}, \varphi_{3 s}\right]^{T}

Configuration kinematic model

【考點3】J,C矩陣求解
查找老師的memnto,一定要事先對應好輪子的類型(vt=0)(v_t =0)
J1=[10a10acosβ3csinβ3cbsinβ3c]J_{1}=\left[\begin{array}{ccc} 1 & 0 & a \\ 1 & 0 & -a \\ \cos \beta_{3 c} & \sin \beta_{3 c} & b \sin \beta_{3 c} \end{array}\right]
J2=rI3×3J_2 = -rI_{3\times 3}

(vn=0)(v_n =0)
C1=[010010sinβ3ccosβ3cbcosβ3c]C_{1}=\left[\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 1 & 0 \\ -\sin \beta_{3 c} & \cos \beta_{3 c} & b \cos \beta_{3 c} \end{array}\right]
C2=[]C_2 = [\quad]
【考點4】Degree of mobility
C1=[C1fC1s]==[010010sinβ3ccosβ3cbcosβ3c]C_{1}^{*}=\left[\begin{array}{c} C_{1 f} \\ C_{1 s} \end{array}\right]==\left[\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 1 & 0 \\ -\sin \beta_{3 c} & \cos \beta_{3 c} & b \cos \beta_{3 c} \end{array}\right]
Degree of mobility δm=dim(Ker(C1))=3rank(C1)=32=1\delta_m = dim(Ker(C_{1}^{*}))=3-rank(C_{1}^{*})=3-2 =1
【易錯點】Professor:As I have already pointed out after continuous evaluation , you have to justify that the rank of C1* is 2 whatever β3s\beta_{3s}. It’s easy but you have to do it.

C1mΩ0(θ)ξ˙=C1mξ˙=0C_{1} \cdot^{m} \Omega_{0}(\theta) \cdot \dot{\xi}=C_{1} \cdot m \dot{\xi}=0
Thus,my˙=0^m\dot y = 0 and sin(β3s)mx˙+0+bcos(β3c)mθ˙=0-sin(\beta_{3s})^m\dot x + 0 + bcos(\beta_{3c})^m\dot \theta = 0,we can get a base.
=[1sin(β3s),0,1bcos(β3s)]T\sum = [\frac{1}{sin(\beta_{3s})},0,\frac{1}{bcos(\beta_{3s})}]^T

Posture Kinematic Model

在這裏插入圖片描述us=βs˙u_s =\dot { \beta_s},是已經知道的,我們要看看umu_mξ\xi之間的關係。
0Ωm(θ)=[cosθsinθ0sinθcosθ0001]^0\Omega_m(\theta) = \left[\begin{array}{ccc} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{array}\right]=[1sin(β3s),0,1bcos(β3s)]T\sum = [\frac{1}{sin(\beta_{3s})},0,\frac{1}{bcos(\beta_{3s})}]^T
寫到這裏突然覺得我們的\sum沒有分母會更好計算一點。
ξ=[cosθsin(β3s)sinθsin(β3s)1bcos(β3s)]um\xi=\left[\begin{array}{c} \frac{\cos \theta}{sin(\beta_{3s})} \\ \frac{\sin \theta}{sin(\beta_{3s})} \\ \frac{1}{bcos(\beta_{3s})} \end{array}\right] u_m

Configuration kinematic model

在這裏插入圖片描述【考點4】D,E矩陣求解
We do not have castor wheels,soD=[]D = [\quad].在S(q)S(q)中可以不寫這一行。
E(βs,βc)=J21J1(βs,βc)=(rI3×3)1Ji=1rJ1(βs,βc)\mathbf{E}\left(\beta_{s}, \beta_{c}\right)=-\mathbf{J}_{2}^{-1} \cdot \mathbf{J}_{1}\left(\beta_{s}, \beta_{c}\right)=-(-rI_{3\times 3 })^{-1}J_i=\frac{1}{r}J1(\beta_{s}, \beta_{c})
Thus,E=1r[10a10acosβ3csinβ3cbsinβ3c]E =\frac{1}{r}\left[\begin{array}{ccc} 1 & 0 & a \\ 1 & 0 & -a \\ \cos \beta_{3 c} & \sin \beta_{3 c} & b \sin \beta_{3 c} \end{array}\right]

For the work to be complete, you need to study alternative motorization, determine possible singularities and, if any, interpret what happens physically at the singularity.

E=1r[10a10acosβ3csinβ3cbsinβ3c][1sin(β3s),0,1bcos(β3s)]T=1r[bcosβ3s+asinβ3sbcosβ3sasinβ3sb]E\sum =\frac{1}{r}\left[\begin{array}{ccc} 1 & 0 & a \\ 1 & 0 & -a \\ \cos \beta_{3 c} & \sin \beta_{3 c} & b \sin \beta_{3 c} \end{array}\right] [\frac{1}{sin(\beta_{3s})},0,\frac{1}{bcos(\beta_{3s})}]^T=\frac{1}{r}\left[\begin{array}{c} b\cos\beta_{3s}+a\sin\beta_{3s} \\ b\cos\beta_{3s}-a\sin\beta_{3s} \\ b \end{array}\right]

【考點5】wheel motorization
D,E矩陣共同組成F矩陣,F矩陣是判斷標準。
在這裏插入圖片描述[φ˙1fφ˙2fφ˙3s]=1r[bcosβ3s+asinβ3sbcosβ3sasinβ3sb]\left[\begin{array}{c} \dot \varphi_{1f} \\ \dot \varphi_{2f} \\ \dot \varphi_{3s} \end{array}\right]=\frac{1}{r}\left[\begin{array}{c} b\cos\beta_{3s}+a\sin\beta_{3s} \\ b\cos\beta_{3s}-a\sin\beta_{3s} \\ b \end{array}\right]
We have three cases to consider.

  1. motorizing φ1f\varphi_{1f}
  2. motorizing φ2f\varphi_{2f}
  3. motorizing φ3s\varphi_{3s}

[β˙3sφ˙1f]=[01brcosβ3s+arsinβ3s0][usum]\left[\begin{array}{c} \dot \beta_{3s} \\ \dot{\varphi}_{1f} \end{array}\right]=\left[\begin{array}{cc} 0 & 1 \\ \frac{b}{r}\cos\beta_{3s}+\frac{a}{r}\sin\beta_{3s} &0 \end{array}\right]\left[\begin{array}{c} u_{s} \\ u_{m} \end{array}\right]

[β˙3sφ˙2f]=[01brcosβ3sarsinβ3s0][usum]\left[\begin{array}{c} \dot \beta_{3s} \\ \dot{\varphi}_{2f} \end{array}\right]=\left[\begin{array}{cc} 0 & 1 \\ \frac{b}{r}\cos\beta_{3s}-\frac{a}{r}\sin\beta_{3s} &0 \end{array}\right]\left[\begin{array}{c} u_{s} \\ u_{m} \end{array}\right]

[β˙3sφ˙3s]=[011rb0][usum]\left[\begin{array}{c} \dot \beta_{3s} \\ \dot{\varphi}_{3s} \end{array}\right]=\left[\begin{array}{cc} 0 & 1 \\ \frac{1}{r}b&0 \end{array}\right]\left[\begin{array}{c} u_{s} \\ u_{m} \end{array}\right]

Interpret what happens at the singularity using the ICR and blocking joints selectively.

【考點6】Singularity
第一,二種情況的奇異性分析是類似的,
在這裏插入圖片描述第三種情況由於沒有半徑無窮大的輪子,其實奇異情況是不存在的。之後到底什麼纔是好的驅動方式,交給以後生活中的實踐吧(

今日寫文背景音樂《時代號子》畢竟是勞動節

力量攥在手,夢想在前頭
築路修橋蓋高樓,咱們天下走
汗也不白流,累也不白受
實幹才能出成就,誰也別吹牛
成功一杯酒,親人暖胸口
不悔青春有追求,日子有奔頭
咱們挽起袖,大步朝前走
奮鬥纔會有幸福,勞動最風流
成功一杯酒,親人暖胸口
不悔青春有追求,日子有奔頭
咱們挽起袖,大步朝前走
奮鬥纔會有幸福,勞動最風流
奮鬥纔會有幸福,勞動最風流

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章