FFT結果的物理意義

http://blog.ednchina.com/computer00/115522/Message.aspx


FFT是離散傅立葉變換的快速算法,可以將一個信號變換到頻域。有些信號在時域上是很難看出什麼特徵的,但是如果變換到頻域之後,就很容易看出特徵了。這就是很多信號分析採用FFT變換的原因。另外,FFT可以將一個信號的頻譜提取出來,這在頻譜分析方面也是經常用的。

    雖然很多人都知道FFT是什麼,可以用來做什麼,怎麼去做,但是卻不知道FFT之後的結果是什意思、如何決定要使用多少點來做FFT。

    現在圈圈就根據實際經驗來說說FFT結果的具體物理意義。一個模擬信號,經過ADC採樣之後,就變成了數字信號。採樣定理告訴我們,採樣頻率要大於信號頻率的兩倍,這些我就不在此羅嗦了。

    採樣得到的數字信號,就可以做FFT變換了。N個採樣點,經過FFT之後,就可以得到N個點的FFT結果。爲了方便進行FFT運算,通常N取2的整數次方。

    假設採樣頻率爲Fs,信號頻率F,採樣點數爲N。那麼FFT之後結果就是一個爲N點的複數。每一個點就對應着一個頻率點。這個點的模值,就是該頻率值下的幅度特性。具體跟原始信號的幅度有什麼關係呢?假設原始信號的峯值爲A,那麼FFT的結果的每個點(除了第一個點直流分量之外)的模值就是A的N/2倍。而第一個點就是直流分量,它的模值就是直流分量的N倍。而每個點的相位呢,就是在該頻率下的信號的相位。第一個點表示直流分量(即0Hz),而最後一個點N的再下一個點(實際上這個點是不存在的,這裏是假設的第N+1個點,也可以看做是將第一個點分做兩半分,另一半移到最後)則表示採樣頻率Fs,這中間被N-1個點平均分成N等份,每個點的頻率依次增加。例如某點n所表示的頻率爲:Fn=(n-1)*Fs/N。由上面的公式可以看出,Fn所能分辨到頻率爲爲Fs/N,如果

採樣頻率Fs爲1024Hz,採樣點數爲1024點,則可以分辨到1Hz。1024Hz的採樣率採樣1024點,剛好是1秒,也就是說,採樣1秒時間的信號並做FFT,則結果可以分析到1Hz,如果採樣2秒時間的信號並做FFT,則結果可以分析到0.5Hz。如果要提高頻率分辨力,則必須增加採樣點數,也即採樣時間。頻率分辨率和採樣時間是倒數關係。

 

假設FFT之後某點n用複數a+bi表示,那麼這個複數的模就是An=根號a*a+b*b,相位就是Pn=atan2(b,a)。根據以上的結果,就可以計算出n點(n≠1,且n<=N/2)對應的信號的表達式爲:An/(N/2)*cos(2*pi*Fn*t+Pn),即2*An/N*cos(2*pi*Fn*t+Pn)。對於n=1點的信號,是直流分量,幅度即爲A1/N。

    由於FFT結果的對稱性,通常我們只使用前半部分的結果,即小於採樣頻率一半的結果。

    好了,說了半天,看着公式也暈,下面圈圈以一個實際的信號來做說明。

    假設我們有一個信號,它含有2V的直流分量,頻率爲50Hz、相位爲-30度、幅度爲3V的交流信號,以及一個頻率爲75Hz、相位爲90度、幅度爲1.5V的交流信號。用數學表達式就是如下:

S=2+3*cos(2*pi*50*t-pi*30/180)+1.5*cos(2*pi*75*t+pi*90/180)

    式中cos參數爲弧度,所以-30度和90度要分別換算成弧度。我們以256Hz的採樣率對這個信號進行採樣,總共採樣256點。按照我們上面的分析,Fn=(n-1)*Fs/N,我們可以知道,每兩個點之間的間距就是1Hz,第n個點的頻率就是n-1。我們的信號有3個頻率:0Hz、50Hz、75Hz,應該分別在第1個點、第50個點、第76個點上出現峯值,其它各點應該接近0。實際情況如何呢?我們來看看FFT的結果的模值如圖所示。

  FFT結果的物理意義

                      圖1 FFT結果

    從圖中我們可以看到,在第1點、第51點、和第76點附近有比較大的值。我們分別將這三個點附近的數據拿上來細看:

1點: 512+0i

2點: -2.6195E-14 - 1.4162E-13i 

3點: -2.8586E-14 - 1.1898E-13i

50點:-6.2076E-13 - 2.1713E-12i

51點:332.55 - 192i

52點:-1.6707E-12 - 1.5241E-12i

75點:-2.2199E-13 -1.0076E-12i

76點:3.4315E-12 + 192i

77點:-3.0263E-14 +7.5609E-13i

  

    很明顯,1點、51點、76點的值都比較大,它附近的點值都很小,可以認爲是0,即在那些頻率點上的信號幅度爲0。

接着,我們來計算各點的幅度值。分別計算這三個點的模值,

結果如下:

1點: 512

51點:384

76點:192

    按照公式,可以計算出直流分量爲:512/N=512/256=2;50Hz信號的幅度爲:384/(N/2)=384/(256/2)=3;75Hz信號的幅度爲192/(N/2)=192/(256/2)=1.5。可見,從頻譜分析出來的幅度是正確的。

    然後再來計算相位信息。直流信號沒有相位可言,不用管它。先計算50Hz信號的相位,atan2(-192, 332.55)=-0.5236,結果是弧度,換算爲角度就是180*(-0.5236)/pi=-30.0001。再計算75Hz信號的相位,atan2(192, 3.4315E-12)=1.5708弧度,換算成角度就是180*1.5708/pi=90.0002。可見,相位也是對的。根據FFT結果以及上面的分析計算,我們就可以寫出信號的表達式了,它就是我們開始提供的信號。

    總結:假設採樣頻率爲Fs,採樣點數爲N,做FFT之後,某一點n(n從1開始)表示的頻率爲:Fn=(n-1)*Fs/N;該點的模值除以N/2就是對應該頻率下的信號的幅度(對於直流信號是除以N);該點的相位即是對應該頻率下的信號的相位。相位的計算可用函數atan2(b,a)計算。atan2(b,a)是求座標爲(a,b)點的角度值,範圍從-pi到pi。要精確到xHz,則需要採樣長度爲1/x秒的信號,並做FFT。要提高頻率分辨率,就需要增加採樣點數,這在一些實際的應用中是不現實的,需要在較短的時間內完成分析。解決這個問題的方法有頻率細分法,比較簡單的方法是採樣比較短時間的信號,然後在後面補充一定數量的0,使其長度達到需要的點數,再做FFT,這在一定程度上能夠提高頻率分辨力。

具體的頻率細分法可參考相關文獻。

[附錄:本測試數據使用的matlab程序]

close all; %先關閉所有圖片

Adc=2;  %直流分量幅度

A1=3;   %頻率F1信號的幅度

A2=1.5; %頻率F2信號的幅度

F1=50;  %信號1頻率(Hz)

F2=75;  %信號2頻率(Hz)

Fs=256; %採樣頻率(Hz)

P1=-30; %信號1相位(度)

P2=90;  %信號相位(度)

N=256;  %採樣點數

t=[0:1/Fs:N/Fs]; %採樣時刻

%信號

S=Adc+A1*cos(2*pi*F1*t+pi*P1/180)+A2*cos(2*pi*F2*t+pi*P2/180);

%顯示原始信號

plot(S);

title('原始信號');

figure;

Y = fft(S,N); %做FFT變換

Ayy = (abs(Y)); %取模

plot(Ayy(1:N)); %顯示原始的FFT模值結果

title('FFT 模值');

figure;

Ayy=Ayy/(N/2);   %換算成實際的幅度

Ayy(1)=Ayy(1)/2;

F=([1:N]-1)*Fs/N; %換算成實際的頻率值

plot(F(1:N/2),Ayy(1:N/2));   %顯示換算後的FFT模值結果

title('幅度-頻率曲線圖');

figure;

Pyy=[1:N/2];

for i="1:N/2"

 Pyy(i)=phase(Y(i)); %計算相位

 Pyy(i)=Pyy(i)*180/pi; %換算爲角度

end;

plot(F(1:N/2),Pyy(1:N/2));   %顯示相位圖

title('相位-頻率曲線圖');

發佈了19 篇原創文章 · 獲贊 59 · 訪問量 20萬+
發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章