[轉載]詳解大端模式和小端模式

原文鏈接:https://blog.csdn.net/ce123/article/details/6971544
詳解大端模式和小端模式
嵌入式開發交流羣280352802,歡迎加入!

一、大端模式和小端模式的起源
        關於大端小端名詞的由來,有一個有趣的故事,來自於Jonathan Swift的《格利佛遊記》:Lilliput和Blefuscu這兩個強國在過去的36個月中一直在苦戰。戰爭的原因:大家都知道,喫雞蛋的時候,原始的方法是打破雞蛋較大的一端,可以那時的皇帝的祖父由於小時侯喫雞蛋,按這種方法把手指弄破了,因此他的父親,就下令,命令所有的子民喫雞蛋的時候,必須先打破雞蛋較小的一端,違令者重罰。然後老百姓對此法令極爲反感,期間發生了多次叛亂,其中一個皇帝因此送命,另一個丟了王位,產生叛亂的原因就是另一個國家Blefuscu的國王大臣煽動起來的,叛亂平息後,就逃到這個帝國避難。據估計,先後幾次有11000餘人情願死也不肯去打破雞蛋較小的端喫雞蛋。這個其實諷刺當時英國和法國之間持續的衝突。Danny Cohen一位網絡協議的開創者,第一次使用這兩個術語指代字節順序,後來就被大家廣泛接受。
 
二、什麼是大端和小端
        Big-Endian和Little-Endian的定義如下:
1) Little-Endian就是低位字節排放在內存的低地址端,高位字節排放在內存的高地址端。
2) Big-Endian就是高位字節排放在內存的低地址端,低位字節排放在內存的高地址端。
舉一個例子,比如數字0x12 34 56 78在內存中的表示形式爲:
1)大端模式:

低地址 -----------------> 高地址
0x12  |  0x34  |  0x56  |  0x78
2)小端模式:

低地址 ------------------> 高地址
0x78  |  0x56  |  0x34  |  0x12
可見,大端模式和字符串的存儲模式類似。

3)下面是兩個具體例子:

16bit寬的數0x1234在Little-endian模式(以及Big-endian模式)CPU內存中的存放方式(假設從地址0x4000開始存放)爲:

內存地址    小端模式存放內容    大端模式存放內容
0x4000    0x34    0x12
0x4001    0x12    0x34
32bit寬的數0x12345678在Little-endian模式以及Big-endian模式)CPU內存中的存放方式(假設從地址0x4000開始存放)爲:

內存地址    小端模式存放內容    大端模式存放內容
0x4000    0x78    0x12
0x4001    0x56    0x34
0x4002    0x34    0x56
0x4003    0x12    0x78

 4)大端小端沒有誰優誰劣,各自優勢便是對方劣勢:

小端模式 :強制轉換數據不需要調整字節內容,1、2、4字節的存儲方式一樣。
大端模式 :符號位的判定固定爲第一個字節,容易判斷正負。

三、數組在大端小端情況下的存儲:
  以unsigned int value = 0x12345678爲例,分別看看在兩種字節序下其存儲情況,我們可以用unsigned char buf[4]來表示value:
  Big-Endian: 低地址存放高位,如下:
高地址
        ---------------
        buf[3] (0x78) -- 低位
        buf[2] (0x56)
        buf[1] (0x34)
        buf[0] (0x12) -- 高位
        ---------------
        低地址
Little-Endian: 低地址存放低位,如下:
高地址
        ---------------
        buf[3] (0x12) -- 高位
        buf[2] (0x34)
        buf[1] (0x56)
        buf[0] (0x78) -- 低位
        --------------
低地址


四、爲什麼會有大小端模式之分呢?
      這是因爲在計算機系統中,我們是以字節爲單位的,每個地址單元都對應着一個字節,一個字節爲8bit。但是在C語言中除了8bit的char之外,還有16bit的short型,32bit的long型(要看具體的編譯器),另外,對於位數大於8位的處理器,例如16位或者32位的處理器,由於寄存器寬度大於一個字節,那麼必然存在着一個如果將多個字節安排的問題。因此就導致了大端存儲模式和小端存儲模式。例如一個16bit的short型x,在內存中的地址爲0x0010,x的值爲0x1122,那麼0x11爲高字節,0x22爲低字節。對於大端模式,就將0x11放在低地址中,即0x0010中,0x22放在高地址中,即0x0011中。小端模式,剛好相反。我們常用的X86結構是小端模式,而KEIL C51則爲大端模式。很多的ARM,DSP都爲小端模式。有些ARM處理器還可以由硬件來選擇是大端模式還是小端模式。

 
五、如何判斷機器的字節序
可以編寫一個小的測試程序來判斷機器的字節序:
BOOL IsBigEndian()
{
    int a = 0x1234;
    char b =  *(char *)&a;  //通過將int強制類型轉換成char單字節,通過判斷起始存儲位置。即等於 取b等於a的低地址部分
    if( b == 0x12)
    {
        return TRUE;
    }
    return FALSE;

聯合體union的存放順序是所有成員都從低地址開始存放,利用該特性可以輕鬆地獲得了CPU對內存採用Little-endian還是Big-endian模式讀寫:
BOOL IsBigEndian()
{
    union NUM
    {
        int a;
        char b;
    }num;
    num.a = 0x1234;
    if( num.b == 0x12 )
    {
        return TRUE;
    }
    return FALSE;

六、常見的字節序
一般操作系統都是小端,而通訊協議是大端的。
4.1 常見CPU的字節序
Big Endian : PowerPC、IBM、Sun
Little Endian : x86、DEC
ARM既可以工作在大端模式,也可以工作在小端模式。
 
4.2 常見文件的字節序
Adobe PS – Big Endian
BMP – Little Endian
DXF(AutoCAD) – Variable
GIF – Little Endian
JPEG – Big Endian
MacPaint – Big Endian
RTF – Little Endian
 
另外,Java和所有的網絡通訊協議都是使用Big-Endian的編碼。
 
七、如何進行轉換
對於字數據(16位):
#define BigtoLittle16(A)   (( ((uint16)(A) & 0xff00) >> 8)    | \
                                       (( (uint16)(A) & 0x00ff) << 8))
對於雙字數據(32位):


#define BigtoLittle32(A)   ((( (uint32)(A) & 0xff000000) >> 24) | \
                                       (( (uint32)(A) & 0x00ff0000) >> 8)   | \
                                       (( (uint32)(A) & 0x0000ff00) << 8)   | \
                                       (( (uint32)(A) & 0x000000ff) << 24))
八、從軟件的角度理解端模式
        從軟件的角度上,不同端模式的處理器進行數據傳遞時必須要考慮端模式的不同。如進行網絡數據傳遞時,必須要考慮端模式的轉換。在Socket接口編程中,以下幾個函數用於大小端字節序的轉換。
#define ntohs(n)     //16位數據類型網絡字節順序到主機字節順序的轉換
#define htons(n)     //16位數據類型主機字節順序到網絡字節順序的轉換
#define ntohl(n)      //32位數據類型網絡字節順序到主機字節順序的轉換
#define htonl(n)      //32位數據類型主機字節順序到網絡字節順序的轉換

其中互聯網使用的網絡字節順序採用大端模式進行編址,而主機字節順序根據處理器的不同而不同,如PowerPC處理器使用大端模式,而Pentuim處理器使用小端模式。
       大端模式處理器的字節序到網絡字節序不需要轉換,此時ntohs(n)=n,ntohl = n;而小端模式處理器的字節序到網絡字節必須要進行轉換,此時ntohs(n) = __swab16(n),ntohl = __swab32(n)。__swab16與__swab32函數定義如下所示。
#define ___swab16(x)
{
            __u16 __x = (x);
            ((__u16)(
                        (((__u16)(__x) & (__u16)0x00ffU) << 8) |
                        (((__u16)(__x) & (__u16)0xff00U) >> 8) ));
}
 
 
#define ___swab32(x)
{
            __u32 __x = (x);
            ((__u32)(
                        (((__u32)(__x) & (__u32)0x000000ffUL) << 24) |
                        (((__u32)(__x) & (__u32)0x0000ff00UL) << 8) |
                        (((__u32)(__x) & (__u32)0x00ff0000UL) >> 8) |
                        (((__u32)(__x) & (__u32)0xff000000UL) >> 24) ));
}

        PowerPC處理器提供了lwbrx,lhbrx,stwbrx,sthbrx四條指令用於處理字節序的轉換以優化__swab16和__swap32這類函數。此外PowerPC處理器中的rlwimi指令也可以用來實現__swab16和__swap32這類函數。
       在對普通文件進行處理也需要考慮端模式問題。在大端模式的處理器下對文件的32,16位讀寫操作所得到的結果與小端模式的處理器不同。單純從軟件的角度理解上遠遠不能真正理解大小端模式的區別。事實上,真正的理解大小端模式的區別,必須要從系統的角度,從指令集,寄存器和數據總線上深入理解,大小端模式的區別。

九、從系統的角度理解端模式
先補充兩個關鍵詞,MSB和LSB:
  MSB:MoST Significant Bit ------- 最高有效位
        LSB:Least Significant Bit ------- 最低有效位

        處理器在硬件上由於端模式問題在設計中有所不同。從系統的角度上看,端模式問題對軟件和硬件的設計帶來了不同的影響,當一個處理器系統中大小端模式同時存在時,必須要對這些不同端模式的訪問進行特殊的處理。
       PowerPC處理器主導網絡市場,可以說絕大多數的通信設備都使用PowerPC處理器進行協議處理和其他控制信息的處理,這也可能也是在網絡上的絕大多數協議都採用大端編址方式的原因。因此在有關網絡協議的軟件設計中,使用小端方式的處理器需要在軟件中處理端模式的轉變。而Pentium主導個人機市場,因此多數用於個人機的外設都採用小端模式,包括一些在網絡設備中使用的PCI總線,Flash等設備,這也要求在硬件設計中注意端模式的轉換。
       本文提到的小端外設是指這種外設中的寄存器以小端方式進行存儲,如PCI設備的配置空間,NOR FLASH中的寄存器等等。對於有些設備,如DDR顆粒,沒有以小端方式存儲的寄存器,因此從邏輯上講並不需要對端模式進行轉換。在設計中,只需要將雙方數據總線進行一一對應的互連,而不需要進行數據總線的轉換。
       如果從實際應用的角度說,採用小端模式的處理器需要在軟件中處理端模式的轉換,因爲採用小端模式的處理器在與小端外設互連時,不需要任何轉換。而採用大端模式的處理器需要在硬件設計時處理端模式的轉換。大端模式處理器需要在寄存器,指令集,數據總線及數據總線與小端外設的連接等等多個方面進行處理,以解決與小端外設連接時的端模式轉換問題。在寄存器和數據總線的位序定義上,基於大小端模式的處理器有所不同。
       一個採用大端模式的32位處理器,如基於E500內核的MPC8541,將其寄存器的最高位msb(most significant bit)定義爲0,最低位lsb(lease significant bit)定義爲31;而小端模式的32位處理器,將其寄存器的最高位定義爲31,低位地址定義爲0。與此向對應,採用大端模式的32位處理器數據總線的最高位爲0,最高位爲31;採用小端模式的32位處理器的數據總線的最高位爲31,最低位爲0。         
       大小端模式處理器外部總線的位序也遵循着同樣的規律,根據所採用的數據總線是32位,16位和8位,大小端處理器外部總線的位序有所不同。大端模式下32位數據總線的msb是第0位,MSB是數據總線的第0~7的字段;而lsb是第31位,LSB是第24~31字段。小端模式下32位總線的msb是第31位,MSB是數據總線的第31~24位,lsb是第0位,LSB是7~0字段。大端模式下16位數據總線的msb是第0位,MSB是數據總線的第0~7的字段;而lsb是第15位,LSB是第8~15字段。小端模式下16位總線的msb是第15位,MSB是數據總線的第15~7位,lsb是第0位,LSB是7~0字段。大端模式下8位數據總線的msb是第0位,MSB是數據總線的第0~7的字段;而lsb是第7位,LSB是第0~7字段。小端模式下8位總線的msb是第7位,MSB是數據總線的第7~0位,lsb是第0位,LSB是7~0字段。
         由上分析,我們可以得知對於8位,16位和32位寬度的數據總線,採用大端模式時數據總線的msb和MSB的位置都不會發生變化,而採用小端模式時數據總線的lsb和LSB位置也不會發生變化。
         爲此,大端模式的處理器對8位,16位和32位的內存訪問(包括外設的訪問)一般都包含第0~7字段,即MSB。小端模式的處理器對8位,16位和32位的內存訪問都包含第7~0位,小端方式的第7~0字段,即LSB。由於大小端處理器的數據總線其8位,16位和32位寬度的數據總線的定義不同,因此需要分別進行討論在系統級別上如何處理端模式轉換。在一個大端處理器系統中,需要處理大端處理器對小端外設的訪問。
十、實際中的例子
       雖然很多時候,字節序的工作已由編譯器完成了,但是在一些小的細節上,仍然需要去仔細揣摩考慮,尤其是在以太網通訊、MODBUS通訊、軟件移植性方面。這裏,舉一個MODBUS通訊的例子。在MODBUS中,數據需要組織成數據報文,該報文中的數據都是大端模式,即低地址存高位,高地址存低位。假設有一16位緩衝區m_RegMW[256],因爲是在x86平臺上,所以內存中的數據爲小端模式:m_RegMW[0].low、m_RegMW[0].high、m_RegMW[1].low、m_RegMW[1].high……
爲了方便討論,假設m_RegMW[0] = 0x3456; 在內存中爲0x56、0x34。
       現要將該數據發出,如果不進行數據轉換直接發送,此時發送的數據爲0x56,0x34。而Modbus是大端的,會將該數據解釋爲0x5634而非原數據0x3456,此時就會發生災難性的錯誤。所以,在此之前,需要將小端數據轉換成大端的,即進行高字節和低字節的交換,此時可以調用步驟五中的函數BigtoLittle16(m_RegMW[0]),之後再進行發送纔可以得到正確的數據。
————————————————
版權聲明:本文爲CSDN博主「ce123」的原創文章,遵循 CC 4.0 BY-SA 版權協議,轉載請附上原文出處鏈接及本聲明。
原文鏈接:https://blog.csdn.net/ce123_zhouwei/article/details/6971544

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章